

Copia No Controlada

Instituto Nacional de Tecnología Industrial

Centro de Desarrollo e Investigación en Física y Metrología

Procedimiento específico: PEA14

EQUIPO CALIBRADOR Y MEDIDOR DE SONIDO, VERIFICACION DE CARACTERISTICAS TECNICAS

Revisión: Enero 2015

Este documento se ha elaborado con recursos del Instituto Nacional de Tecnología Industrial. Sólo se permite su reproducción sin fines de lucro y haciendo referencia a la fuente.

PEA14 Lista de enmiendas: Enero 2015

ENM	IENDA	DESCARTA	R		INSERTAR			RECIBIDO
N°	FECHA	CAPÍTULO	PÁGINA	PÁRRAFO	CAPÍTULO	PÁGINA	PÁRRAFO	FIRMA

1 de 1

PEA14 Índice: Enero 2015

NOMBRE DEL CAPÍTULO	REVISIÓN
Página titular	Enero 2015
Lista de enmiendas	Enero 2015
Índice	Enero 2015
Equipo calibrador y medidor de sonido, verificacion de caracteristicas tecnicas	Enero 2015
Apéndice 1	Enero 2015

PREPARADO POR	REVISADO POR	
Ing. JORGE RIGANTI U.T. ACUSTICA INTI-FISICA Y METROLOGIA	FIRMA Y SELLO	
REVISADO POR	REVISADO POR	APROBADO POR
FIRMA Y SELLO ING. LUCIA TAIBO COORDINADORA ACUSTICA INTI - FISICA Y METROLOGIA	TEC. ARIEL QUINDT U.I. CALIDAD Y ADMINISTRACION FISICA Y METROLOGIA IN TI	FIRMA Y SELLO ING. JUAN A. FORASTIERI DIBECTOR JECNICO INTI - PISICA Y METROLOGIA

1. Objeto

Establecer un método para verificar las características técnicas de equipos calibradores y medidores de sonido.

2. Alcance

Calibrador y medidor de sonido marca Hentschel, modelo SK148.

3. Definiciones y abreviaturas

Se encuentran en las normas de referencia.

4. Referencias

- Norma IRAM 4074, parte 1/88, medidores de nivel sonoro, especificaciones generales
- Manual de instrucciones del equipo calibrador y medidor de sonido marca Hentschel, modelo SK148.
- Manual de instrucciones del multímetro marca Hewlett Packard, modelo 34401A.
- Manual de instrucciones del osciloscopio marca Phillips, modelo PM 3320A.
- Manual de instrucciones del medidor de nivel sonoro marca Bruel & Kjaer, modelo 2230.

5. Responsabilidades

5.1. Del Coordinador de la Unidad Técnica Acústica

Supervisar la realización de las calibraciones. Verificar que se cumplan los procedimientos y revisar los resultados.

5.2. Del personal del laboratorio

Realizar las calibraciones aplicando el presente procedimiento. Procesar los datos correspondientes y emitir el certificado.

6. Instrucciones

- Las instrucciones de trabajo se efectúan de acuerdo a la siguiente metodología:
- A.- Ajuste de la amplitud de salida (PEGEL ABGLEICH), item 7.2.
- Se conecta la salida del calibrador SK148 (conector BNC KAL AUS) al multímetro HP 34401 A. Para la función "ajuste de nivel" (PEGEL ABGLEICH) se fija una salida de 100 dB y corrección de nivel: +0,00 dB, la lectura en el multímetro debe ser de 100 mV ± 1 mV.
- B.- Ajuste de la amplitud de salida (PEGELLINEARITAET), item 7.2.
- Se pasa a la función linealidad en nivel (Pegellinearitaet), 1 kHz, 100 dB, LINEAR. La lectura en el multímetro debe ser de $100 \text{ mV} \pm 1 \text{ mV}$.
- Verificar la tensión de salida para los niveles de salida del calibrador SK148 tal como se observa en la tabla 1.

SK148 Nivel de salida (dB)	HP34401A Tensión leída (V)	Tolerancia (dB)
100	0,100	±0,1
110	0,316	±0,1
120	1,000	±0,1
130	3,159	±0,1

Tabla 1

Conectar a la salida del SK 148 el medidor de nivel sonoro B&K 2230 mediante conector JJ2614 provisto con un capacitor de 4,7 nF. La salida del B&K 2230 se conecta al multímetro HP 34401A. Verificar la tensión de salida para las amplitudes de salida desde 100 dB hasta 20 dB. Se incluye la tabla 2 a modo de ejemplo.

SK148 Nivel de salida (dB)	B&K 2230 Deflexión a plena escala (dB)	HP34401A Tensión leída (V)	Tolerancia (dB)
100	100	1,5482	±0,1
90	90	1,5509	±0,1
80	80	1,5492	±0,1
70	70	1,5556	±0,1
60	70	0,4923	±0,1
50	70	0,0155	±0,1
40	70	0,0492	±0,2
30	70	0,0156	±0,3
20	70	0,0051	±0,5

Tabla 2

C.- Respuesta en frecuencia (Dauersignal), item 7.4.

Conectar a la salida del SK148, el HP34401A y un distorsímetro en paralelo. Verificar que para una salida de 120 dB (1V) y para el rango de frecuencias indicadas, la amplitud se mantiene dentro de \pm 0,1 dB, la frecuencia se halla comprendida en \pm 0,1% y la distorsión es inferior al 1 % en todos los casos.

D.- Ensayo de valor eficaz (Test Gleichrichtung), item 7.5

A partir de este punto, todos los ensayos se realizan conectando a la salida del SK148, el osciloscopio PM 3320^a.

D.1.- Señal de prueba: tren de señales (Sinusburst als Prüfsignal), ítem 7.5.1.

Nivel (Kal.-PEGEL): 100,0 dB

Factor de cresta	Nº de períodos	Duración del pulso (ms)	Separación entre pul- sos (ms)	Valor eficaz del pulso (mV)
3	11	$5,5 \pm 0,1$	25,0 ± 0,1	100± 2
5	4	2.0 ± 0.1	25,0 ± 0,1	100± 2
10	1	0,5 ± 0,02	25,0 ± 0,1	100± 2

Verificar la amplitud del pulso también para 80dB (10 mV) \pm 0,2 dB y 60 dB (1 mV) \pm 0,2 dB.

D.2.- Señal de prueba: pulsos rectangulares (Rechteckburst als Prüfsignal), ítem 7.5.2. Nivel (Kal.-PEGEL): 100,0 dB

Duración del pulso (ms)	Duración del pulso (μs)	Separación entre pul- sos (ms)	Valor eficaz del pulso (mV)
3	200 ± 2	1,8 ± 0,1	100± 2
5	200 ± 2	5,0 ± 0,1	100± 2
10	200 ± 2	20,0± 0,2	100± 2

Copia No Controlada

PEA14: Enero 2015

Verificar la amplitud del pulso también para 80dB (10 mV) \pm 0,2 dB y 60 dB (1 mV) \pm 0,2 dB.

E.- Ensayo del indicador de sobrecarga (Prüfung der Übersteuerunganzeige), item 7.6. Nivel de salida: 110 dB (316 mV) \pm 0,2 dB.

Duración del pulso (ms)	Valor eficaz del pulso (mV)
0,050 ± 0,002	316± 6
10 ± 0,1	316± 6

F.- Ponderación temporal Fast, Slow, Impuls (Zeitbewertung FAST, SLOW, IMPULS), ítem 7.7 F.1.- Ponderación temporal Fast (Zeitbewertung FAST 2kHz-puls 200MS), ítem 7.7.1.

Nivel (KalPEGEL)	Duración del pulso (ms)	Amplitud pico a pico del pulso (mV)
130	200± 2	2816 ± 56
110	200± 2	891 ± 18
90	200± 2	28,16 ± 0,6
70	200± 2	8,9 ± 0,2

F.2.- Ponderación temporal Slow (Zeitbewertung SLOW 2kHz-puls 500MS), item 7.7.3.

Nivel (KalPEGEL)	Duración del pulso (ms)	Amplitud pico a pico del pulso (mV)
130	500± 5	2816 ± 56
110	500± 5	891 ± 18
90	500± 5	28,16 ± 0,6
70	500± 5	8,9 ± 0,2

F.3.- Ponderación temporal Impuls, item 7.7.4.

F.3.1. Pulso único (EINZELIMPULS), item 7.7.4.1.

Nivel (KalPEGEL)	Duración del pulso (ms)	Amplitud pico a pico del pulso (mV)
110	20± 0,1	891 ± 18
90	20± 0,1	28,16 ± 0,6
70	20± 0,1	8,9 ± 0,2
110	5± 0,05	891 ± 18
90	5± 0,05	28,16 ± 0,6
70	5± 0,05	8,9 ± 0,2
110	2± 0,02	891 ± 18
90	2± 0,02	28,16 ± 0,6
70	2± 0,02	8,9 ± 0,2

F.3.2.- Tren de pulsos (IMPULSE - FOLGE), item 7.7.4.2

Tren de pulsos	Nivel (KalPEGEL)	Duración del pulso (ms)	Separación entre pulsos (ms)	Amplitud pico a pico del pulso (mV)
100 Hz/5 ms	110	5± 0,05	10 ± 0,1	891 ± 18
100 Hz/5 ms	90	5± 0,05	$10 \pm 0,1$	28,16 ± 0,6
100 Hz/5 ms	70	5± 0,05	10 ± 0,2	8,9 ± 0,2
20 Hz/5 ms	110	5± 0,05	50 ± 0,5	891 ± 18
20 Hz/5 ms	90	5± 0,05	50 ± 0.5	28,16 ± 0,6
20 Hz/5 ms	70	5± 0,05	50 ± 0,5	8,9 ± 0,2
2 Hz/5 ms	110	5± 0,05	500 ± 5	891 ± 18
2 Hz/5 ms	90	5± 0,05	500 ± 5	28,16 ± 0,6
2 Hz/5 ms	70	5± 0,05	500 ± 5	8,9 ± 0,2

G.- Promediación temporal (Zeitlicher Mittelwert), item 7.9

Nivel de salida equivalente- Aeq. Dauer- signal (dB)	Duración del pulso (display)	Duración del pulso (s)	Tolerancia En la duración del pulso (%)	Separación entre pulsos (s)	Amplitud del pulso (mV)	Tolerancia En la amplitud del pulso (mV)
70,0	10 exp 1	1	±1	$10 \pm 0,1$	10,0	±0,2
70,0	10 exp 2	0,1	±1	$10 \pm 0,1$	31,6	±0,6
70,0	10 exp 3	0,01	±1	$10 \pm 0,1$	100	±2,0
70,0	10 exp 4	0,001	±1	$10 \pm 0,1$	316	±6,0

H.- Promediación temporal para velocidad "I"(A/I Bewerteter Mittelungspegel), ítem 7.10

Nivel de salida (dB)	SIGNAL (dB)	Duración del pul- so (display)	Duración del pulso (ms) (*)	Separación entre pulsos (s)	Amplitud del pulso (mV)
110,0	-00	1000 ms/0,2 Hz	1000	5 ± 0,05	316 ± 3
110,0	-00	20ms/0,2 Hz	20	5 ± 0,05	316 ± 3
110,0	-00	1ms/0,2 Hz	1	5 ± 0,05	316 ± 3
110,0	-20	1000 ms/0,2 Hz	1000	5 ± 0,05	$31,6 \pm 0,6$
110,0	-20	20ms/0,2 Hz	20	5 ± 0,05	$\textbf{31,6} \pm \textbf{0,6}$
110,0	-20	1ms/0,2 Hz	1	5 ± 0,05	$31,6 \pm 0,6$
110,0	-40	1000 ms/0,2 Hz	1000	5 ± 0,05	3,1 ± 0,6
110,0	-40	20ms/0,2 Hz	20	5 ± 0,05	3,1 ± 0,6
110,0	-40	1ms/0,2 Hz	1	5 ± 0,05	$\textbf{3,1} \pm \textbf{0,6}$

6.1. Identificación y almacenaje

Los equipos a calibrar se identifican de acuerdo con las instrucciones del Manual de la Calidad del IN-TI - Física y Metrología y son guardados, desde su ingreso hasta la devolución al cliente, en el Laboratorio de Electroacústica, sala Nº 60.

6.2. Instrumental a utilizar

- Calibrador y medidor de sonido marca Hentschel, modelo SK148, número de serie :079.
- Osciloscopio marca Phillips, modelo PM 3320A, número de serie:
- Medidor de nivel sonoro marca Bruel & Kjaer, modelo 2230, número de serie 1162356.
- Multímetro, marca Hewlett Packard, modelo 34401A, Nº de serie: 5435172.
- Termómetro e higrómetro digital, marca DAVIS, modelo weather monitor II, Nº de serie:MC50717A06.
- Barómetro marca BRUEL & KJAER, modelo UZ0004, Nº de serie: 1943274.

6.3. Condiciones ambientales

Temperatura ambiente: (23 ± 2) °C. Presión atmosférica: (1013 ± 10) hPa. Humedad relativa: (50 ± 20) %.

6.4. Incertidumbres de medición

Tensión: \pm 0,2 %. Frecuencia: \pm 0,5%.

7. Registros de la Calidad

Se conservan registros manuscritos de las observaciones originales, copia de los certificados emitidos, como así también copia de la orden de trabajo, salida de elementos y demás documentación relacionada, de acuerdo con el Manual de la Calidad del INTI - Física y Metrología, capítulo 11.

8. Precauciones

No aplicable.

9. Apéndices y anexos

APÉNDICE N°	TITULO
1	Cálculo de incertidumbres

PEA14 Apéndice 1: Enero 2015

Cálculo de Incertidumbres

PLANILLA PARA EL CALCULO DE LA INCERTIDUMBRE DE CALIBRACION

	Equipo calibrador y medidor de sonido, ensayo valor de ponderación
Procedimiento: PEA14	temporal "Impulse" con tren de pulsos

Fuente de incertidumbre	Símbolo	C _i ⁽¹⁾	Valor (±)	Distribución ⁽²⁾	Factor	ν _i ⁽³⁾	u _i
Duración del pulso		1	0,2	R	1,7	10000	0,12
Amplitud del pulso		1	0,2	R	1,7	10000	0,12
Separación entre pulsos		1	0,2	R	1,7	10000	0,12
Incertidumbre Tipo B estimada (k=1)	u _c			Ν (1σ)		30000,0	0,20

Fuente de incertidumbre Tipo A, dB re 20 μPa		
Incertidumbre Tipo A como distribución Normal (dB)		
Repetibilidad	0,2	
Incertidumbre Tipo A estimada (k=1)	0,2	

Incertidumbre total, dB re 20 µPa			
Tipo A, N(95%)	k	2,0	0,392
Tipo B, N(95%)	k	2,0	0,392
Incerticumbre total, k=2			0,554

Incertidumbre Final, dB re 20 μPa	± 0,55

⁽¹⁾ Coeficientes de sensibilidad

⁽²⁾ N: normal; R:rectangular (3) Grados de libertad.