Code
Example 10.1 (cont’d) Calculations and Discussion Reference
Mg _ 332 > 1. Hence (Io)g = I, = 10,650 in.*4
M, 30.9 s
b.  Under sustained load
3 3
Mer = (—33'2) = (0.473
Mgy 42.6
(Tedsus = (M/My)3 Ig +[1- MMy Iy € Ig Eq. (9-8)
= (0.473) (10,650) + (1 - 0.473) (3770)
= 7025 in4
¢. Under dead + live load
3 3
ﬁ = (92._2_) = (0.229
Mgy 54.3
(Te)qee = (0.229) (10,650) + (1 - 0.229) (3770)
= 5345in.4
6. Initial or short-time deflections, using Eq. (3): 8522
9523

K (5/48) Maf? (1) (5/48) (30.9) (25)% (12)°
E.(e)g (3320) (10,650)

A = = 0.098 in.

K = 1 for simple spans (see Table 8-3)

K (5/48) Mg _ (1) (5/48) (42.6) 25)* (12)° _ (oo
Ec (e)gus (3320) (7025

(Agus =

K (5M48) Mg,ef> (1) (5/48) (54.3) 25)* (12)°
E. (Io)grs (3320) (5345)

= 0.344 in.

(Aidare =

(A)r = (ADgse - (Aj)g = 0344 -0.098 = 0246 in.

Allowable Deflections (Table 9.5(b)}:

Flat roofs not supporting and not attached to nonstructural elements likely to be damaged
by large deflections—

Ay < £ 300 1.67 in. > 0.246in. QK.
180 180
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Example 10.1 (cont’d)

Calculations and Discussion

Code
Reference

Floors not supporting and not attached to nonstructural elements likely to be damaged by
large deflections—

!

Ay € —
( i)f 360

300
360

—— = 0.83in. > 0.246 in.

0O.K.

7. Additional long-term deflections at ages 3 mos. and 3 yrs. {ultimate value):

Combined creep and shrinkage deflections, using Egs. (9-11) and (4):

Duration & % = g (Adsus (Aj)g Acp + Agh = MAsys Acp + Agh + (A)y
1+ 50p’ in. in. in. in.
5-years 2.0 1.77 0.205 0.246 0.363 0.61
3-months | 1.0 0.89 0.205 0.246 0.182 0.43

Separate creep and shrinkage deflections, using Egs. (5) and (6):

For p = 0.0077; p” = 0.0026

For p = 100p = 0.77 and p"= 100p" = 0.26, read Ay, = 0.455 (Fig. 10-3) and K¢, = 0.125
for simple spans (Tablel0-5).

. 0.85C; pop=DishEsh
Duration G P +50p’ Agp= 7Lcp (A))gus Esh sh™h Ash=Ksh¢shf2 Agp+ Asn+{d)y
in. in./in. 1/in. in. in.
) 4 B
5-years 1.6 1.20 0.246 400 x 1076 0.458x400x10 7 g X871 0% | 0.246+0.093+0.246
(ultimate) -8 2$2>< 106 w(25% 1212
' = 0.093 =059
3- 0.56%1.6 0.68 0.14 0.6 x400x106 4.96x10% =0.0558 0.14+0.056+0.246
months =09 =240x 108 =0.44

Allowable Deflection Table 9.5(b):

Roof or floor construction supporting or attached to nonstructural elements likely to be
damaged by large deflections (very stringent limitation).

ACp +Ash +(A1)€ < L = @ = (.63 in.

0.K. by both methods
480 480

Roof or flocr construction supporting or attached to nonstructural elements not likely to
be damaged by large deflections.

¢ 300

Ao + Ay + (AP £
cp sh (:)3 240

= 1.251in.

O.K. by both methods
240
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Exampie 10.2—Continuous Nonprestressed T-Beam

Required: Analysis of short-term and ultimate long-term deflections of end-span of multi-span beam shown
below.

Not used _ [

/ in exarple § - No. 8 (Ag = 3.95 in.2)
F3 Y 7 ¥
[ o
[8Y]
3-No. 8 (Ag=2.37 in 3 2-No.8 (Ag=158in2) ) |2

P
301t =360 in.

Beam spacing = 10", b = 360/4 = 90" or 120" or 16(5) + 12 = 92", Use 90"

= 5"

Gross Section Cracked Section-Midspan
b= 90" " b = 0"

h

-1
N
—
—
X

N\

E— e — - —

nAg = (11.3)(2.37) = 26.8in.2
p = 2.37/(90)(22.5) = 0.00117
Pw = 2.371(12)(22.5) = 0.00878

p'=0
Data:

f. = 4000 psi (sand-lightweight concrete)
fy = 50,000 psi
we = 120 pcf

Beam spacing = 10 ft
Superimposed Dead Load (not including beam weight) = 20 psf
Live Load = 100 psf (30% sustained)

( A is not required for strength)

Beam will be assumed to be continuous at one end only for hyyy, in Table 9.5(a), for Avg. I in Eq. (1), and for Kg,
in Eq. (6), since the exterior end is supported by a spandrel beam. The end span might be assumed to be
continuous at both ends when supported by an exterior column.

Code
Calculations and Discussion Reference

1. Minimum thickness, for members not sapporting or attached to partitions or other construc-
tion likely to be damaged by large deflections:
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Code
Example 10.2 (cont’d) Calculations and Discussion Reference

¢
hpip = Y Table 9.5(a)

Modifying factors = 1.09 for w, = 120 pef [footnote (a) Table 9.5(a)]
= 0.9 for fy, = 50,000 psi [footnote (b) Table 9.5(a)]

hmin = (%) (0.90) (1.09) = 19.1in. < h = 25in. OK.

2. l.oads and moments:
wg = (20 x 10) + (120) (12 x 20+ 120 x 5)/144 = S00 Ib/ft
we = (100 x 10) = 1000 Ib/ft

In lieu of a moment analysis, the ACI approximate moment coefficients may be 8.3.3
used as follows: Pos. M = w£n2/14 for positive I, and maximum deflection, Neg.
M= w£n2/10 for negative L.

a. Positive Moments

2 2
Pos. My = W‘iin = (0'90(3(30) = 57.9 fikips

(1.000) (30)*
14

Pos. M, = 64.3 ft-kips

Pos. Mg,y = 57.9 + 64.3 = 122.2 ft-kips
Pos. Mgys = Mg+ 0.30M,; = 57.9 + (0.30) (64.3) = 77.2 ft-kips

b. Negative Moments

waly? _ (0.900) 30)>

= 81.0 ft-kips
10 10

Neg. My =

(1.000) (30)2

Neg. M, 10

= 50.0 ft-kips

1

Neg. Mg, = 81.0 + 90.0 = 171.0 fe-kips
Neg. Mgys = Mg+ 0.30M, = 81.0 + (0.30) (90.0) = 108.0 ft-kips

3. Modulus of rupture, modulus of elasticity, modular ratio:

fo = (0.85) (7.5 = 6.38/4000 = 404 psi (0.85 for sand lightweight concrete) Eq. (9-10)
9.5.2.3(b)

10-27




\

Code
Example 10.2 (cont’d) Calculations and Discussion Reference

B, = w933,/ = (120)"° 3344000 = 2.74 x 106 pst 8.5.1

E,  29x10°

Zs o= 2220 = 106
E. 274 x 10°

n =

4. Gross and cracked section moments of inertia:

a. Positive moment section

¥t = h-(1/2) [(b - by) h?+ byh? /(b - by) hr + byh)

25 - (1/2) [(78) (5)2 + (12)( 25)2V/[(78) (5) + (12) (25)]

18.15 in.

I = (b- by) h/12 + byh3/12 + (b - by) b (h - he/2 - y)? + byh (v - b/2)2

(78) (5)3/12 + (12) (25)312 + (78) (5) (25 - 2.5 - 18.15)2

+(12) (25)(18.15 - 12.5)2 = 33,390 in4

b _ 90
nA,  (10.6) (2.37)

= 3.58/in. (Table 10-2)

N2dB+1-1  4f(2) (225 (358) +1-1
B h 3.58

kd =

= 328in. < hy =5in.

Hence, treat as a rectangular compression area.

I = bk3d3/3 + nAg (d - kd)?2 = (90) (3.28)3/3 + (10.6) (2.37) (22.5 - 3.28)2
= 10,340 in.#

b. Negative moment section

3
1, = 22X2% _ 15625in
2

I = 11,185 in# (similar to Example 10.1, for b= 12in.,d =22.5in., d’ =2.5in,,
Ag = 395in2, A} =1.58in2)

5. Effective moments of inertia, using Eqgs. (9-8) and (1):
a. Positive moment section:

Mer = filgly, = [(404) (33,390)/(18.15)1/12,000 = 61.9 ft-kips Eq. (9-9)
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Code

Example 10.2 (cont’d) Calculations and Discussion Reference
Ma/Mg = 61.9/57.9 > |. Hence (le)g = Ig = 33,350 in?
MMgye)® = (61.9/77.2)% = 0.515
Iesus = (MM I + [1 - Mc/M)? L < I Eq. (9-8)

= (0.515) (33,390) + (1 - 0.515) (10,340) = 22,222 in4
(Mcr/Md+g)3= (61.9/122.2)2 = 0.130
(Ie)gee = (0.130)(33,390) + (1 - 0.130) (10,340) = 13,336 in.4
b. Negative moment section:
My = [(404) (15,625)/(12.5)]/12,000 = 42.] ft-kips Eqg. (9-9)
(Mc/Mg)? = (42.1/81.0)3 = 0.14
(Ie)g = (0.14) (15,625) + (1 - 0.14) (11,185) = 11,808 in4 Eq. (9-8)
(Mc/Mgys)? = (42.1/108.0)% = 0.06
(Iedsus = (0.06) (15,625) +(1-0.06) (11,185) = 11,448 in* Eq. (9-8)
(M /Mg,g) = (42.1/171.0) = 0,015
(e)gsr = (0.015) (15,625 + (1 - 0.015) (11,185) = 11,251 in.4 Eq. (8-8)
c.  Average inertia values:

Avg. (L) = 08515 + 0.15 (cont. end) Eq. (1)
Avg. (I.)g = (0.85) (33,390) + (0.15) (11,808) = 30,153 in#
Avg. (Ie)sus = (0.85) (22,222) + (0.15) (11,448) = 20,606 in4
Avg. (I)g4e = (0.85) (13,336) + (0.15) (11,251) = 13,023 in.

6. Initial or short-time deflections, with midspan . and with avg. L: 9524

Eq. (3)

) = k(2] Ml
' 48/ El,

K = 1.20- 0.20M/M, = 1.20- (0.20) (w£n2/8)/(w£n2/14) = 0.850

o)), = K (5/48) Mg#?  (0.85) (5/48) (57.9) 30)% (12)°
Yd T B () (2740) (33,390)
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Code
Example 10.2 (cont’d) Calculations and Discussion Reference

= (.096 in., using avg. I, = 30,149 in.*

K(5/48)Mgye?® _ (0.85)(5 / 48)(77.2)(30)*(12)°

(A, . = = 0.175 in.
1/gus Ec(le) s (2740)(22,222)

= (.188 in., using avg. I, = 20,594 in.#

K(5748)Mg,,#%  (0.85)(5/48)(122.2)(30)*(12)°

A. = = = i
( 1)d+£ EC(IC)d+g (2740)(13,336) 0.460 in,

= 0.472in., using avg. [, = 13,023 in4
(A), = (A1), - (A)y = 0460 - 0.087 = 0373 in.
0.472 - 0.096 = 0.376 in., using avg. L, from Eq. (1)
Allowable deflections Table 9.5(b):

For flat roofs not supporting and not attached to nonstructural elements likely to be
damaged by large deflections — (Ai)e < £/180 = 2.00in. > 0.376in. O.K

For floors not supporting and not attached to nonstructural elements likely to be damaged
by large deflections — (A;), < £/360 = 360/360 = 1.00in. OK.

7. Ultimate long-term deflections:

Using ACI Method with combined creep and shrinkage effects:

g _ 2.0 (ultimate value) _

= 2.0 -
1+ 50p 1+0 Eq.(5-11)

Acprsn) = MAi)gs = (2.0)(0.175) = 0.350in. Eq. (4)
Aeprsny + (A)¢ = 0350 + 0373 = 0723 in.

= [2(0.188) + 0.376] = 0.752 using avg. L, from Eq. (1).
Using Alternate Method with separate creep and shrinkage deflections:

hep = 0.85C, _ (0.85) (1.60) _ 136

1 + 50p 1+0

Ay = A (Ai),, = (1.36)0.175 = 0.238 in. Eq. (5)
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Code
Example 10.2 (cont’d) Calculations and Discussion Reference

= 1.36(0.188) = 0.256 in., using avg. I, Eq. (1).

p = 100 (———p"*p“f) = 100( 237 23 )/2
2 90x 22,5 12 %225

100 {0.00117 + 0.00878)/2 = 0.498%

Agh (from Fig. 10-3) = 0.555

bs = Ay Edu _ (0555 (400 x 10°%)
sh sh h. 53

= 8.88 x 10°%/in.

Ag = Kpdaf® = (0.090) (8.8 x 10%) 30y (12)* = 0.104in. Eq. (6)

0.238 + 0.104 + 0.373 = 0.7151n.

Acp + Ash + (Ai)’g
(0.256 + 0.104 + 0.376) = 0.736., using avg. I, from Eq. (1).

Allowable deflections Table 9.5(b):

For roof or floor construction supporting or attached to nonstructural elements likely to
be damaged by large deflections (very stringent }Jimitation) —

£ 360 .
ACP+ASh +(Ai)g < m = Z‘B = 0.75in.

All results O.K.

For roof or floor construction supporting or attached to nonstructural elements not likely
to be damaged by large deflections —

A +Ag +(A), € — = 22 _ 150 All results OK.

4 240 240
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Example 10.3—Slab System Without Beams (Flat Plate})

Required: Analysis of short-term and ultimate long-term deflections of a corner panel.
Data:

Flat plate with no edge beams, designed by Dyrect Design Method

Slab f; = 3000 psi, Column f{ = 5000 psi, (normal weight concrete)
fy = 40,000 psi

Square panels—15 x 15 ft center-to-center of columns

Square columns-—14 x 14 in., Clear span, £, = 15-1.17 = 13.83 ft

Story height = 10 ft, Slab thickness, h = 6in.
The reinforcement in the column strip negative moment regions consists of No. 5 bars at 7.5 in. spacing.
Therefore, the total area of steel in a 90-in. strip (half the panel length) is given by:

Ay =(90/7.5)(0.31)=3.72 5q. in.

The distance from the compressive side of the slab to the center of the steel is:

d=4.62in

Middle Strip reinforcement and d values are not required for deflection computations, since the slab remains
uncracked in the middle strips.

Superimposed Dead Load = 10 psf

Live Load = 50 psf

Check for 0% and 40% Sustained Live Load

Code
Calculations and Discussion Reference

1. Minimum thickness: 9532

From Table 10-6, with Grade 40 steel:

Interior panel hyyy, = % = (13.83 x 12)/36 =4.61 in.

Exterior panel hypip = % = (13.83 x 12)/33 = 5.031in.

Since the actual slab thickness is 6 in., deflection calculations are not required; however,
as an illustration, deflections will be checked for a corner panel, to make sure that all
allowable deflections per Table 9.5(b) are satisfied.

2. Comment on tiial design with regard to deflections:

Based on the minimum thickness limitations versus the actual slab thickness, it appears
likely that computed deflections will meet most or all of the code deflection limitations.
It turns out that all are met.
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Code

Example 10.3 (cont’d) Calculations and Discussion Reference
3. Modulus of rupture, modulus of elasticity, modular ratio:

f, = 7.5f. = 7.543000 = 411 psi Eq. (9-10}

Eeo = WP 33 = (150)1 3343000 = 3.32 x 10° psi 85.1

Ee = (150)'° 334/5000 = 4.29 x 10° psi
nels -2 _gp3
E, 332

4. Service load moments and cracking moment:

wg = 10+ (150) (6.0)/12 = 85.0 psf

Mo)g = Welo0,2 18 = (85.0) (15) (13.83)2/8000 = 30.48 fi-kips

(Mg)gre = Walof,218 = (85.0+50.0) (15) (13.83)2/8000 = 48.41 fr-kips

(Mgdsus = (85 + 0.4 x 50) (15)(13.83)2/8000 = 37.65 ft-kips

The moments are distributed to the ends and centers of the column and middle strips according
to the coefficients in the tables of Sections 13.6.3.3, 13.6.4.1, 13.6.4.2 and 13.6.4.4. In this
case, the span ratio, £5/¢1, is equal to 1.0. The multipliers of the panel moment, M,, that are

used to make the distribution in an end span are given in the following table:

Ext. Negative Positive Int. Negative
Total Panel 0.26 0.52 0.70
Col. Strip (1.0)(0.26) (0.60)(0.52) {(0.75)(0.70)
Mid. Strip {1.0-1.0)(0.26) (1.0-0.60)(0.52) (1.0-0.75)(0.70)

The resulting moments applied to the external and internal ends and to the center span of the

column and middle strips are given in the following tables:

Dead Load Moments, fi-kips

Ext Negative Positive Int. Negative
Total Panel 7.93 15.85 21.34
Cdl. Strip 7.93 9.51 16.00
Mid. Strip 0] 6.34 5.34
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Example 10.3 (cont’d) Calculations and Discussion Reference

Dead Load + Live Load Moments, fi-kips

Ext Negative Positive Int. Negative
Tetal Panel 12.59 2518 33.89
Cdl. Strip 12.59 1510 25.41
Mid. Strip 0 10.07 847

Sustained Load Mornents, ft-kips (Dead Load + 40% Live Load)

Ext. Negative Positive Int. Negative
Total Panel 9.79 19.58 26.36
Col. Strip 9.79 11.75 19.77
Mid. Strip 0 7.83 6.59

The gross moment of inertia of a panel, referred to as the total equivalent frame moment of
inertia is:

Tframe = £6h3/12 = (15 x 12)(6)3/12 = 3,240 in*

For this case, the moment of inertia of a column strip or a middle strip is equal to half of the
moment of inertia of the total equivalent frame:

Iy = /,(3240) = 1,620 in.*

The cracking moment for either a column strip or a middle strip is obtained from the standard
flexure formula based on the uncracked section as follows:

Modorz = Medmn = Glghye = (411) (15 x 12) (6.03/(4) (12) (3.0) (12,000)
= 9.25 fr-kips
5. Effective moments of inertia:

A comparison of the tabulated applied moments with the cracking moment shows that the
apportioned moment at all locations, except at the interior support of the column strips for the
live load and sustained load cases, is less than the cracking moment under the irmposed loads.
The cracked section moment of inertia is, therefore, only required for the column strips in the
negative moment zones. Formulas for computation of the cracked section moment of inertia
are obtained from Table 10-2:

1
— (15 x 12)
B- -2 _2 =2_77(_L]

nA 8.73 x 372 in.

5

V2dB +1-1 _ V2 x462x277+1-1 _ .

kd =
B 2.77
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Example 10.3 (cont’d) Calculations and Discussion Reference
3 3
I, = b(ksd) + nA(d - kd)* = &‘3@” + 873 x 3.72 (4.62 - 1.50)° = 417in*

To obtain an equivalent moment of inertia for the cracked location, apply the Branson modifi-
cation to the moments of inertia for cracked and uncracked sections. The approximate mo-
ment of inertia in the cracked sections is given by the general formula in Equation (9-8) of
ACI318. From the tables developed in Section 4 above, the ratios of the dead load plus live
load and sustained load moments to the cracking moment are found as follows:

For live dead load plus live load:

M, _ 1850
Do = 2 728
M, 2541

a

3
(-M—) = 0386
Ma

and for the sustained load case (dead load plus 40% live load):

—

8.5
9.7

<

MCI
M,

3
MCF
—o | = 0819
( Ma ]

The equivalent moment of inertia for the two cases are now computed by Eq. (9-8) of ACI 318:

= 0.936

—
~J

For dead load plus live load:

I = (0.386)1620 + (1-0.386)(417) = 881 in.4
For sustained load (dead load + 40% live load}:

I, = (0.819)1620 + (1-0.819)(417) = 1402 in.*

Finally, the equivalent moment of inertia for the uncracked sections is just the moment of iner-
tia of the gross section, Ig.

To obtain an average moment of inertia for calculation of deflection, the “end” and “midspan™
values are then combined according to Equation (1):

For dead load plus live load:

Avg. I = 0.85(1620) + 0.15(881)] = 1509 in4
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Exampie 10.3 (cont’d} Calculations and Discussion

Code

Reference

For sustained load (dead load + 40% live load):
Avg. [ = 0.85(1620) + 0.15(1402)] = 1587 in.#

To obtain the equivalent moment of inertia for the “equivalent frame”, which consists of a
column and a middle strip, add the average moments of inertia for the respective strips. For the
middle strips, the moment of inertia is that of the gross section, I, and for the column strips, the
average values computed above are used:

For dead load only:

(Ie)rame = 1620 + 1620 = 3240 in.*
For dead load plus live load:

(Le)frame = 1620 + 1509 = 3129 in.#
For dead load plus 40% live load:

(Ie)rame = 1620 + 1587 = 3207 in.*

Note: In this case, where a corner panel is considered, there is only half of a column strip along
the two outer edges. However, the section properties for half a strip are equal to half of those for
a full strip; also, the applied moments to the edge strip are half those applied to an interior strip.
Consequently, deflections calculated for either a haif or for a full column strip are the same.
Strictly, these relationships only apply because all panels are of equal dimensions in both direc-
tions. If the panels are not square or if adjacent panels are of differing dimensions, additional
calculations would be necessary.

6. Flexural stiffness (Ke¢) of an exterior equivalent column:
Ky = 0 (no beams)

The stiffness of the equivalent exterior column is determined by combining the stiffness of the
upper and lower columns at the outer boundary of the floor with the torsional stiffness offered
by a strip of the floor slab, parallel to the edge normal to the direction of the equivalent frame
and extending the full panel length between columns. In the case of a corner column, the length
is, of course, only half the panel length. The width of the strip is equal to the column dimension
normal to the direction of the equivalent frame (ACI 318, R13.7.5).

The column stiffness is computed on the basis of the rotation resulting from application of a
moment to the simply supported end of a propped cantilever, M = 4EI/L.. In this case the result is:

Ke = 4E I /4. = 4B [(AHH(12))/[(10) (12)] = 106.7E,

Since the columns above and below the slab are equal in dimension, the total stiffness of the
columns is twice that of a single column:

SK, = 2K; = (2) (106.7Eqc) = 213.4E,
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Example 10.3 (cont’d) Calculations and.Discussion Reference

The torsional stiffness of the slab strip is calculated according te the methodology set out in
R13.7.5 of ACI 318, K = Z9Es/L2(1-c2/L2)3. The cross-sectional torsional constant, C, is
defined in Section 13.0 of ACI 318,

= (1-0.63 x/y) (x3y/3) = (1-0.636 x 6.0/14) (6.0° x 14/3) = 735.8 in*

S9EC  _ (2)(9) Ey (735.8)

T L -ty ( 14 )3
15) (12| 1-

= 93.9E

For Ext. Frame, K¢ = 93.9E./2 = 47B, Boe = (4.29/3.32) Bes = 1.292E,

The equivalent column stiffness is obtained by treating the column stiffness and the torsional
member stiffness as springs in series:

I
Ees = 70E, = 19,370 ft-kips /rad

K.. =

(=

il

1 1 1 ) ( 1 )
+ — +
K, K, (213.4 x 1.292 93.9

For Ext. Frame, K . = i Ees T
+
(213.4 X 1.292) (47.0)

= 40.1E = 11,090 ft-kips /rad

7. Deflections, using Egs. (7) to (14):

Fixed Agame = Wlpf*/384E Jeome Eq. (10)

(85.0 or 135.0 or 105.0) {15)° (12)>
(384) (3.32 x 10 6) (3240 or 3129 or 3207)

(Fixed Ay me Md+e =

0.627 in., 0.044 in.; 0.034

Fixed Acp = (LDF)em (Fixed Agame) (irame/Tem) Eq. (11)

These deflections are distributed to the column and middle strips in the ratio of the total
applied moment to the beam stiffness (M/EI) of the respective strips to that of the complete
frame. As shown in Step 4 above, the fraction of bending moment apportioned to the column
or middle strips varies between the ends and the midspan. Therefore, in approximating the
deflections by this method, the average moment allocation fraction (Lateral Distribution
Factor - LDF) is used. In addition, since the equivalent moment of inertia changes whenever
the cracking moment is exceeded, an average moment of inertia is utilized. This average
mement of inertia is computed on the basis of Equation (9-8) from ACI 318 and Eq. (1) of
this chapter.  Finally, since the modulus of elasticity is constant throughout the slab, the term
E occurs in both the numerator and the denominator and is, therefore, omitted. The LDFs
are calculated as follows:
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Example 10.3 (cont’d) Calculations and Discussion Reference
For the column strip:
LDF.= Y2 [ Y2 Mg + Miext ) + M1 = 1A[ 2(0.75 +1.00) + 0.60] = 0.738
For the middle strip:
LDFp = |- LDF; = 0.262

(Fixed A )g = (0.738) (0.027) (2) = 0.040in.

(Fixed A )g., = (0.738) (0.044) (3129/1509) = 0.067 in.

(Fixed A.), = 0.067 - 0.040 = 0.027 in.

(Fixed Ag)sys = (0.738)(0.034)(3207/1587) = 0.051 in

(Fixed Ap)q = (0.262) (0.027) (2) = 0.014 in.

(Fixed Ay )gee = (0.262) (0.044) (3129/1620) = 0.022 in.

(Fixed Ap)e = 0.022-0.014 = 0.008 in.

(Fixed Apg)sys = (0.0.262)(0.034)(3207/1587) = 0.018 in
In addition to the fixed end displacement found above, an increment of deflection must be
added to each due to the actnal rotation that occurs at the supports. The magnitude of the
increment is equal to gL/8. The rotations, g, are determined as the net moments at the column
locations divided by the effective column stiffnesses. In this case, the column strip moment at
the corner column of the floor is equal to half of 100% of 0.26 x M, (ACI 318, Sec. 13.6.3.313
and Sec.13.6.4.2). Because the column strip at the edge of the floor is only half as wide as an
interior column strip, only half of the apportioned moment acts. The net moments at other
columns are either quite small or zero. Therefore they are neglected. The net moments on a
corner colurnn for the three loading cases are:

Mpetdg = 2 X 0.26 X 1.00 X (Mg)a = Y2 [(0.26)(1.00)}(30.48) = 3.96 ft-kips

(Mpeddse = 2 X 0.26 X 1.00 X (Mg)gse = 2 [(0.26)(1.00)](48.41) = 6.29 ft-kips

Mpedeus = Y2 % 0.26 X 1.00 X (Mg)gys = /2 [(0.26)(1.00)](37.65) = 4.89 ft-kips

For both column and middle strips,

End 8; = (Mpedafave. Koo =3.96/11,090 = 0.000357 rad Eq. (12)

End 64, = 6.29/11,090 = 0.000567 rad

10-38




Code
Example 10.3 (cont’d) Calculations and Discussion Reference

End 6gy5 = 4.89/11090 = 0.000441 rad
A® = (End 6) (¢/8) (1/Te)trame Eq. (14)
(AB)g = (0.000357) (15) (12) (1)/8 = 0.008 in.

(AB)gp, = (0.000567) (15) (12) (1620/1509)/8 = 0.014 in.

(AD), = 0.014 - 0.008 = 0.006 in.

(AB)gys = (0.000441)(15)(12)/8 = 0.010 in.

The deflections due to rotation calculated above are for column strips. The deflections due to
end rotations for the middle strips will be assumed to be equal to that in the column strips.
Therefore, the strip deflections are calculated by the general relationship:

Acm = Fixed Ag py + (AB) Eq.(9)

(Ac)y = 0.040+0.008 = 0.048 in.
(Agm)y = 0.014+0.008 = 0.022 in.
(Ac), = 0.027 +0.006 = 0.033 in.
(Am), = 0.008+0.006 = 0.014 in.

(Ad)sus = 0.051 + (0.010) = 0.061 in.

(Am)sus = 0.018 + (0.010) = 0.028 in.
A = Ay + Apy = midpanel deflection of corer panel Eq. (7)

0.070 in.

(Ai)d = 0.048 + 0.022

(Ai)g = 0.033 +0.014 = 0.047 in.

(ADsus = 0.061 + 0.028 = 0.089 in.

The long term deflections may be calculated using Eq. (9-11) of ACI 318 (Note: p’ = 0):

For dead load only:

(Acprshda =2.0 X (4;), = (2)(0.070) = 0.140 in.
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For sustained load (dead load + 40% live load)
(Acp+sh)sus = 2.0 X (Apsus = (2)(0.109) = 0.218 in.

The long term deflection due to sustained load plus live load is calculated as:
(Acp+shlsus + (Apz = 0.218 + 0.047 = 0.265 in,

These computed deflections are compared with the code allowable deflections in Table
9.5(b) as follows:

Flat roofs not supporting and not attached to nonstructural elements likely to be damaged
by large deflections—

(A;i), S (¢4 0r2)/180 = (13.83 or 15) (12)/180 = 0.92 in. or 1.00 in., versus 0.047 in. O.K.

Floors not supporting and not attached to nonstructural elements likely to be damaged by
large deflections—

{Aj), < (£50r £)/360 = 0.46 in. or 0.50 in., versus 0.047in. O.K.

Roof or floor construction supporting or attached to non-structural elements likely to be
damaged by large deflections—

Aqepeshy + (A1), < (Lo or £)/480 = 0.35in. or 0.38 in., versus 0.265in. O.K.

Roof or floor construction supporting or attached to non-structural elements not likely to
be damaged by large deflections—

Accpshy *+ (A), < (€ 0r£)/240 = 0.69in. or 0.75 in., versus 0.265 in. OX.

All computed deflections are found to be satisfactory in all four categories.
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Example 10.4—Two-Way Beam Supported Slab System

Required: Minimum thickness for deflection control

Data:
" b J . b ,
_~— ] L 1
% S hehy<ang ) hehy < 4hy
= el
by = 12" | by = 12"
Interior Beam Edge Beam
fy = 60,000 psi, slab thickness hy = 6.5 in.
Square panels—22 x 22 ft center-to-center of columns
All beams—by = 12in.andh = 24in. £, = 22-1=21ft
It is noted that f; and the loading are not required in this analysis.
Code
Calculations and Discussion Reference

1. Effective width b and section properties, using Table 10-2:
a. Interior Beam
I, = (22) (12) (6.5)%/12 = 6040 in.4
h-hy = 24-6.5 = 175in. <4hf = (4)(6.5) = 26in. O.K.

Hence,b-= 12+ (2)(17.5) = 47 in,

yi = h-(1/2) [(b - by) hi? + byhZ}/[(b -by) hs + byh]
= 24 - (1/2) [(35) (6.5)2 + (12) (24)2[(35) (6.5) + (12) (24)]
= 15.86in.
Ih = (b~ by) he¥/12 + byh3/12 + (b - by) by (h - he/2 - y)2+ byh (y, - h/2)2

= (35) (6.5)%12 + (12) (24)3/12 + (35) (6.5) (24 - 3.25 - 15.86)2 +

(12) (24) (15.86 - 12)2 = 24,360 in.4

of = Eeplp/Bels = Iyl = 24,360/6040 = 4.03
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b. Edge Beam
I, = (11)(12) (6.5)%/12 = 3020in#
b= 12+(24-6.5) = 29.5in.
yi = 24 - (1/2) [(17.5) (6.5)% + (12) (24)2)[(17.5) (6.5) + (12)( 24)] = 14.48in.
I, = (17.5) (6.5)3/12 + (12) (24)3112 + (17.5) (6.5) (24 - 3.25 - 14.48)2 +
(12) (24) (14.48 - 12)2 = 20,470 in4
ar = Ip/l; = 20,470/3020 = 6.78
Ctgm and B values:
Oy (average value of o for all beams on the edges of a panel):
Interior panel — Gy = 4.03
Side panel — o, = [(3) (4.03) + 6.78]/4 = 4.72
Comner panel — oy, = [(2) (4.03) +(2) (6.78))/4 = 5.41
For square panels, B =ratio of clear spans in the two directions = 1
2. Minimum thickness: 9533
Since Ogy > 2.0 for all panels, Eq. (9-13) applies.
ta (0'8 ¥ 20(?000}
bpypin = v 913, Eq. (9-13)
11008+ £2000)
= 36+ 500) = = 6.16in. ({all panels)
Hence, the slab thickness of 6.5 in. > 6.16 in. is satisfactory for all panels, and deflections
need not be checked.
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Example 10.5—Simple-Span Prestressed Single T-Beam

Required: Analysis of short-term and ultimate long-terhlrcamber and deflection.

Data:

8ST36 (Design details from PCI Handbook 3rd Edition, 1985)

Span = 80 ft, beam is partially cracked

f&G = 3500 psi, f{ = 5000 psi (normal weight concrete)
fpy = 270,000 psi

Ep = 27,000,000 psi

14 - 1/2 in. dia. depressed (1 Pt.) strands

4 - 1/2 in. dia. nonprestressed strands
{Assuine same centroid when computing I;)
P; = (0.7) (14) (0.153) (270) = 404.8 kips

P, = (0.90} (404.8) = 364 kips

P = (0.78) (404.8) = 316 kips
e.=11.15in,e.=2251in.

yr=26.01in, Ag=570in.2, I, = 68,920 in4
Self weight, w, = 594 1b/fi

Superimposed DL, wg = (8)(10 psf) = 80 Ib/ft is applied at age 2 mos (Bs = 0.76 in Term (6) of Eq. (15))

Live load, w, = (8)(51 psf) = 408 Ib/ft
Capacity is governed by flexural strength

s
‘t,-S

©
)

8!!

Calculations and Discussion

Code
Reference

1. Span-depth ratios (nsing PCI Handbook):

Typical span-depth ratios for single T beams are 25 to 35 for floors and 35 to 40 for roofs,
versus (80)(12)/36 = 27, which indicates a relatively deep beam. It turns out that all

allowable deflections in Table 9.5(b) are satisfied.

2. Moments for computing deflections:

wof” _ (0.594) (80)°

= 475 fi-kips
8 8

MG=
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(x 0.96 = 436 ft-kips at 0.4¢ for computing stresses and I.— tendons depressed at one
point)

wef® _ (0.080) (80)°

: . = 64 ftkips (61 ft-kips at 0.47)

M, =

wel® _ (0408) (80)
8 8

M, = = 326 fi-kips (313 ft-kips at 0.4¢)

3. Modulus of rupture, modulus of elasticity, moment of inertia:

f, = 7.5f, = 7.5J5000 = 530 psi Eq. (9-10)
Eg = w3335 = (1501 3343500 = 3.59 x 10 psi 8.5.1

E, = w,333Jf = 50! 3375000 = 4.29 x 10 psi
[+ C C

E

Ep _ 27x10°
EC

S =63
4.29 x 10

n=

The moment of inertia of the cracked section, at 0.4¢, can be obtained by the approximate
formula given in Eq. 4.8.2 of the PCI Handbook:

Ie = nAd*(1 - 164np) = (63) (18 x 0.153) (30.23)" (1 - 1.6v63 x 0.000949)

= 13,890 in? (at 0.4¢)

It may be shown that the cracked section moment of inertia calculated by the formulas given in
Table 10.2 is very close to the value obtained by the approximate method shown above. The
results differ by approximately 1%; therefore either method is suitable for this case.

4. Determination of classification of beams

In order to classify the beam according to the requirements of ACI Section 18.3.3, the maxi-
mum flexural stress is calculated and compared to the modulus rupture to determine its classifi-
cation. The classifications are defined as follows:

Class U: f, < 7541,
Class T: T3JE < £ £ 124f;
Class C: f, > 124,
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Example 10.5 (cont’d) Calculations and Discussion

Code
Reference

The three classes refer to uncracked (U), transition (T} and cracked (C} behavior

The maximum tensile stress due to service loads and prestressing forces are calculated by the
standard formula for beams subject to bending moments and axial loads. It may be shown that
the maximum bending stresses in a prestressed beam occur at approximately 0.4¢. In the fol-
lowing, the bending moments are those that occur at 0.4¢. The eccentricity of the prestressing
force at 0.4¢, e = 20.24 in, is obtained by linear interpolation between the end eccentricity,
€e = 11.15 in and that at the center, e = 22.51. The calculation proceeds as follow:

Mg =My + M,

£ = Myy, Pey P
L=

I, i, A,

={(456 + 61 + 313)(12) - (316)(20.24)] [(26.01)/68,920] - 316/570
f, = 791 psi

Check the ratio of calculated tensile stress to the square root of f;:
£, 791

JE T 45000

The ratio is between 7.5 and 12, therefore according to the definitions of Section 18.3.3 of ACI
318, the beam classification is T, transition region. Table R18.3.3 requires that deflections for
this classification be based on the cracked section properties assuming bi-linear moment deflec-
tion behavior; Section 9.5.4.2 of the code allows either a bi-linear moment-deflection approach
or calculation of deflections on the basis of an equivalent moment of inertia determined accord-

ing to Eq. (9-8).

=112

5. Determine live load moment that causes first cracking:

Check the tensile stress due to dead load and prestressing forces only. As noted previously, the
maximum tensile stresses occur at approximately 0.44:

fy = [(456 + 61)(12) - (316)(20.24)] [(26.01)/68920] — 316/570 = - 627 psi

Since the sign is negative, compressive stress is indicated. Therefore, the section is uncracked
under the dead load plus prestressing forces and dead load deflections can be based on the
moment of inertia of the gross concrete cross section. It was shown above that the maximum
tensile stress due to combined dead load plus live load equals 791 psi, which exceeds the modu-
lus of rupture, f; = 530 psi

Therefore, the live load deflections must be computed cn the basis of a cracked section analysis
because the behavior is inelastic after the addition of full live load. In particular, Table R18.3.3
of ACI 318 requires that bilinear behavior be utilized to determine deflections in such cases,
however. Section 9.5.4.2 permits deflections t¢ be computed either on the basis of bilinear
behavior or on the basis of an effective moment of inertia.
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In order to calculate the deflection assuming bilinear behavior, it is first necessary to determine
the fraction of the total live load that causes first cracking. That is, to find the portion of live
load that will just produce a maximum tensile stress equal to fr. The desired value of live load
moment can be obtained by re-arranging the equation used above to determine the total tensile
stress (for classification), and setting the tensile stress equal to f;. The moment value is obtained

as follows (Note: Quantities calculated at 0.44):

. ) fI, Pl
Live Load Cracking Moment = —= + Pe + - My
Y Ay

= (530)68920)/(12000)(26.01) + 316(20.24/12) +[(316/570)(68920/26.01))/12 - 517
=117 + 533 +122 - 517

=255 ft-kips

The fraction of the live load cracking moment to the total live load moment is:

255/313 =0.815

6. Camber and Deflection, using Eq. (15):

2 2
Bo (6c - €e)f + Poee? (from PCI Handbook for single point
12Eg], BE,lg

Term (1) — Apo =

depressed strands)

_(364) (22.51 - 11.15) (80)% (12) , (364 (11.15) 802 (12)°
- (12) (3590) (68.920) (8) (3590) (68,920)

= 3.17in.

SMoe2  (5) (475) 80)% (12)°

= = 221 1in.
48Eql,  (48) (3590) (68,590)

Term (2) — A, =

Term (3) —kr = U[1 + (Ag/Apg)] = U1 +(4/14)] = 0.78

ene )

0

The increment in prestressing force is:
AP, =P, - P, = 364 - 316 = 48 kips
It follows that:

AP /P, = 48/364 = Q.13
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Therefore, the deflection is:

= [-0.13+ (0.78 x 2.0) (1 - 0.065)] (3.17) = 4.2} in.
Term (4) — (k:Cp) A, = (0.78) (2.0) (2.21) = 3.451in.

SM2 (5) (64) (80)% (12)°
48Ech - (48) (4290) (68,920)

Term (5) — A, = = {.251in.

Term (6) — (Bsk,Cy) Ay = (0.76) (0.78) (1.6) (0.25) = 0.24 in.
Term (7) — Initial deflection due to live load.

The ratio of live load cracking moment 10 total live load moment was found previously. To
calculate the deflection according to bi-linear behavior, the deflection due to the portion of
the live load below the cracking value is based on the gross moment of inertia; the deflection
due to the remainder of the live load is based on the cracked section moment of inertia. Also,
the deflections are based on moments at the center of the span even though the moment that

caused initial cracking was evaluated at 0.4¢.

The deflection formula used is the standard expression:

5 ML?
48 El

A=

For the portion of the live load applied below the cracking moment load, the value of M is the
value calculated above, 255 ft-kips and the moment of inertia is that of the gross section:

Agy = 5(255)(80)2(12)3/48(3590)(68590) = 1.19 in

Deflection due to the remainder of the live load is calculated similarly, with a moment of
313-255 = 58 fi-kips and the cracked section moment of inertia, 13,890 in*:

Agp = 5(58)(80)2(12)3/48(3590)(13,890) = 1.34 in
The total live load deflection is the sum of the previous two components:

Ap=1.19 +1.34 =2.53 in,
Itcan be verified by a separate calculation that the deflection based on the full live load moment
and the effective moment of inertia, calculated by Eq. 9-8 of ACI 318, is slightly less than that

calculated here on the basis of a bi-linear moment-deflection relationship.
Combined results and comparisons with code limitations
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“n e & @ G ©® O

A, = -3.17 + 221 -421 + 345 + 0.25 + 0.24 + 2.53 = 1.30in. ) Eq. (15)

Initial Camber = Apo A, =3.17-221 = 0.9 in. T versus 1.6 in. at erection in PCI
Handbook

Residual Camber = Ay -A, = 2.53-0.87 = 1.661in. T versus 1.1 in.
Time-Dependent plus Superimposed Dead Load and Live Load Deflection

-421+345+025+024+2.53 = 2.261in. or

2.26in. {

Il
I

Ay - (B - Apo) =0.87-(-0.96)

These computed deflections are compared with the allowable deflections in Table 9.5(b)

as follows:
£/180 = (80) (12)/180 = 533 in. versus A, = 2.53in. O.K.
£/360 = (80) (12)/360 = 2.67 in. versus A, = 2.53in. OK.

I

21480 = (80) (12)/480 = 2.00 in. versus Time-Dep. etc. =2.26in. O.K.

Note that the long term deflection occurring after attachment of non-structural elements (2.26 in)
exceeds the L/480 limit. 1t actually meets L/425. Since the L/480 limit only applies in case of
nonstructural elements likely 1o be damaged by large deflections, the particular use of the beam
would have to be considered in order to make a judgment on the acceptability of the computed
deflections. Refer to the footnotes following Table 9.5(b) of ACI 318.
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Example 10.6—Unshored Nonprestressed Composite Beam

Required: Analysis of short-term and ultimate long-term deflections.

b = be/ng = 76/1.15 = 66.1"

Data: I N
N

Normal weight concrete

Slab {7 = 3000 psi

Precast beam £ = 4000 psi o
fy = 40,000 psi

Ag=3-No.9=3.00in.2 t

E; = 29,000,000 psi F

Superimposed Dead Load (not including beam and slab weight) = 10 psf
Live Load =75 psf (20% sustained)

Simple span =26 ft = 312 in., spacing = 8 ft = 96 in.

be = 312/4 =78.0 in., or spacing = 96.0 in., or 16(4) + 12 =76.0in.

)
1

24"

I

12"

Calculations and Discussion

Code

Reference

1. Minimum thickness for members not supporting or attached to partitions or other construc-

tion likely to be damaged by large deflections:

312

£
hmin = (1_6) (0.80 for fy) = (-1—6—

2. Loads and moments:
w1 = (10 psf) (8) + (150 pcf) (96) (4)/144 = 480 [b/ft
wy = (150 pef) (12) (20)/144 = 250 1b/ft

wy = (75 psf) (8) = 600 Ib/ft
M; = wi£2/8 = (0.480) (26)2/8 = 40.6 fi-kips
My = wof2/8 = (0.250) (26)2/8 = 21.1 fr-kips

M, = w,2/8 = (0.600) (26)%/8 = 50.7 ft-kips

3. Modulus of rupture, modulus of elasticity, modular ratio:
(o) = w5338, = (150)"% 333000 = 332 x 10° psi
(f)y = 757 = 7.5J4000 = 474 psi

(E)y = (150" 3344000 = 3.83 x 10° psi
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Eq. (8-10}
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Example 10.6 (cont’d) Calcuiations and Discussion Reference
ne = & L 3B s
{Ec)y 32
n= Es =2 = 7.56
(Ec);  3.83

4. Gross and cracked section moments of inertia, using Table 10-2:
Precast Section
I, = (12) (20)%12 = 8000 in.#

B = b/(nAy) = 12/(7.56) (3.00) = 0.529/n.

kd

(v2dB +1-1)/B = [(2)(17.5) (0.529) + 1 - 1}/0.529 = 6.46 in.

I = bk3d3/3 + nA, (d-kd)2 = (12) (6.46)3/3 + (7.56) (3.00) (17.5 - 6.46)2 = 3840 in.4

Composite Section

yi = h- (1/2) [(b - by} h2+ byh2/[(b - by) he + byh]
= 24 - (1/2) [(54.1) (4)2 + (12) (24)2)/[(54.1) (&) + (12) (24)] = 16.29 in.
Ig = (b- by} /12 + byh3/12 + (b - by,) he (h - he/2 - y)? + byh (7, - b/2)2
= (54.1) (4312 + (12) (24)312 + (54.1) (4) (24 - 2 - 16.29)2
+(12) (24) (16.29 - 12)2 = 26,470 in 4
B = b/(nAy) = 66.1/(7.56) (3.00) = 2.914

kd = (V2dB + 1- 1)/B = [J(2) 21.5) G.914) + 1 - 1}/2.914

= 3.511in. <hr = 4in. Hence, treat as a rectangular compression area.
Ier = bk3d3/3 + nAg (d -kd)? = (66.1) (3.51)3/3 + (7.56) (3.00) (21.5 - 3.51)2

= 8295in4
b/l = [(Ifle)g + (/) e )/2 = [(8000/26,470) + (3840/8295))/2 = 0.383
5. Effective moments of inertia, using Eq. (9-8):

For Term (1), Eq. (19)—Precast Section,
Mo = flgfy, = (474) (8000)/(10) (12,000) = 31.6 fe-kips Eq. (9-9)

MMy = 31.6/21.1 > 1. Hence (Ie); = Iy = 8000 in.4
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For Term (6), Eq. {19)—Precast Section,

M /(M) + M) 13 = [31.6/(40.6 + 21.1)]3 = 0.134

(Tehs2 = MarMg Ig + (1 - MM Ly < Eq. (9-8)
= (0.134) (8000) + (1 - 0.134) (3840) = 4400 in.%

6. Deflection, using Eq. (19):

= 0.084 in.

Term (1) — (4;), = K (5/48) Mpf® (1) (5/48) (21.1) (26)° (12)°
| V2T By Uy (3830) (8000)

Term (2) — k; = 0.85 (no compression steel in precast beam).

0.7?kr(Ai)2 = (0.77) (0.85) (0.084) = 0.055 in.

Term (3) — 0.83k; (4,), 1_2 = (0.83) (0.85) (0.084) (0.383) = 0.023 in.
c

Term (4) — K, = 1/8. Precast Section: p = (100) (3.00)/(12) (17.5) = 1.43%

From Fig. 8-3, Ay, = 0.789

O = Agh (Egndu/h = (0.789) (400 x 10)20 = 15.78 x 10/in.

A = Kapout® = (1/8) (1578 x 10%) (26)? (12)* = 0.192in.

The ratio of shrinkage strain at 2 months to the ultimate is 0.36 per Table 2.1 of Ref. 10.4
Therefore the shrinkage deflection of the precast beam at 2 months is:

0.36A,, = (0.36) (0.192) = 0.069 in.

Term (5) — 0.64Ag, 1—2 = {0.64} (0.192) (0.383) = 0.047in.

C

K (5/48) (M, + M) ¢2
ferm (6)W(Ai)1 - ( (Ez)(z (lle)1+22) _(Ai)z

(1) (5/48) (40.6 + 21.1) 26)* (12)°
B (3830) (4400)

-0.088 = 0.3581n.

10-51



Code
Example 10.6 {(cont’d) Calculations and Discussion Reference

Term (7) —Creep deflection of the composite beam due to slab dead load. The slab is
cast at 2 months. Therefore, the fraction of the creep coefficient, C , is obtained my
multiplying the value under standard conditions of 1.60 by a b_ value of 0.89 (See expla-
nation of Term (6) in Eq. (15)). The total creep of the beam is reduced by the ratio of the
moment of inertia of the beam to the moment of inertia of the composite section. k_is, as
before, taken as 0.85:

(0.89)(1.60)1(,(1%)l i—z = (0.89) (1.60) (0.85) (0.358) (0.383) = 0.166in.

C

Term (8) —Due to the fact that the beam and the slab were cast at different times, there
will be some contribution to the total deflection due to the tendency of the two parts to
creep and shrink at different rates. It is noted in Table 2.1 of ACI 435R-95 (Ref. 10.4) that ‘
the creep and shrinkage at a time of 2 months is almost half of the total. Consequently, \
behavior of the composite section will be affected by this different age. The proper calco- |
lation of the resulting deflection is very complex. In this example, the deflection due to ‘
differing age concrete is approximated as one-half of the dead load deflection of the beam
due to the slab dead load. Readers are cautioned that this procedure results in only a rough
estimate. Half of the dead load deflection is

Ags = 0.50(A;), = (0.50)(0.358) = 0.179 in. (rough estimate)

Term (9) — Using the alternative method

K (5/48) My£2 (1) (5/48) (50.7) 26)° (12)°
(Eeda (gder (3830) (8295)

= 0.194 in,

(Ai)g =
Term (10) —k; = 0.85 (ncglecting the effect of any compression steel in slab)

(Acp)f = kCy [0.20(4;),]

= (0.85) (1.60) (0.20 x 0.194) = 0.053 in.

In Eq. (19), A, = 0.084 + 0.055 + 0.023 + 0.069 + 0.047 + 0.358 + 0.166 + 0.179 +
0.194 + 0.053
= 1.231in.

Checking Eq. (20) (same solution),

A, = (1.65 +0.71 %%.J (&), + (0.36 +0.64 i—ZJ Agy +

C c
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Code

Example 10.6 (cont’d) Calculations and Discussion Reference

[1.05 + 1.21§—2J (85), + (&), + (8sp),

c

= (1.65+0.71 x 0.383) (0.084) + (0.36 + 0.64 x 0.383) (0.192)

+{1.50 + 1.21 x ©.383) (0.358) + 0.194 + 0.053
= 1.23 in. (same as above)Assurming nonstructural elements are installed after the

composite slab has hardened,

Ag + Agy + (484}, = Terms 3) + (5) + (7) + (8) + (9) + (10)

0.023 + (.047 + 0.166 + 0.179 + 0.194 + 0.053 = 0.66 in.

Comparisons with the allowable deflections in Table 9.5(b) are shown at the end of
Design Example 10.7.
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Example 10.7—Shored Nonprestressed Composite Beam

Required: Analysis of short-term and ultimate long-term deflections, to show the beneficial effect of shoring in
reducing deflections.

Data: Same as in Example 10.6, except that shored construction is used.

Code
Calculations and Discussion Reference
1. Effective moments of inertia for composite section, using Eq. (9-8):
Mer = filpfy, = (474) (26,470)/(16.29) (12,000) = 64.2 ft-kips Eg. (9-9)
M /M + Mp) = [64.2/(406+21.1)] = 1.04 > 1
Hence (I)142 = Ig = 26,470 in.4
In Term (5), Eq. (17)—Composite Section,
M/ (M1 + Mg + Mp))3 = [64.2/(40.6 + 21.1 + 50.7)]® = 0.186
(edger = Mc/Mp)3 I +[1 - (M/M)3] I € Iy Eq. (9-8)

= (0.186) (26,470) + (1 - 0.186) (8295) = 11,675 in4

versus the alternative method of Example 8.6 where I, = (I¢)e; = 8295 in.# was used with
the live load moment directly.

Deflections, using Eqs. (17) and (18):

K (5/48) (M, + M,)¢?
(Ec)z ediea

Term (1) — (Ai)1+2 =

2 3
_ (1) (5/48) (40.6 + 21.1) (26)~ (12) — 0.074in.

(3830) (26,470)

Term (2) —Creep deflection due to total dead load of beam and slab. The value of C,, for
the beam is taken to be 1.60. Consider the value of C,, for the slab to be slightly higher. For

shores removed at 10 days, it may be shown by comparison of the correction factors, K¢

for 10 and 20 day load applications (Section 2.3.4, ACI 435, Ref. 10.4) that the ultimate
creep coefficient for the slab is approximately 1.74. k, is conservatively assumed to have a
value of 0.85.

The average creep coefficient for the composite section is:
Avg Cy=1/(1.60+ 1.74) = 1.67

167k (Ay),,, = (1.67) (0.85) (0.074) = 0.105 in.

1+2
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Example 10.7 (cont’d) Calculations and Discussion

Code
Reference

Term (3) — Shrinkage deflection of the precast beam after shores are removed. As indi-
cated in Term 4 of Example 8.6, the fraction of shrinkage of the precast beam at 2 months
is 0.36. The shores are assamed to be removed about 10 days after the 2-month point.
Therefore, consider the remaining fraction of shrinkage is 1-0.36 = 0.64. Recall that the
ultimate shrinkage, (ggh)y = 400 x 10-6. Utilize the result found for Ag, in Term (4) of
Example 10.6:

Remaining (egp) = (0.64)( 400 x 106) =256 x 106

Ay, i_z = (256/400) (0.192) (0.383) = 0.047 in.

C

Term (4) — Deflection due to differences in shrinkage and creep in the bearn and slab.
This is a complex issue. For this example, assume that the magnitude of this component
is approximated by the initial dead load deflection of the composite section.

Agg = (Ai)l+2 = 0.074 in. (rough estimate)

K (5/48) M, + M, + M,)¢?
Term (9 — (&), = Gon Qe Ao

_ (1) (5/48) (40.6 + 21.1 + 50.7) (26)% (12)°
- (3830) (11,675)

-0.074in. = 0.232in.

Term (6) — k; = 0.85 (neglecting the effect of any compression steel in slab),
(Acp)z = k,.C, [0.20 (Ai)g] = (0.85) (1.60) (0.20 x 0.232) = 0.063 in.

InEq. (17), Ay, = 0.074 + 0.105 + 0.047 + 0.074 + 0.232 + 0.063 = 0.60 in.
versus 1.23 in. with unshored construction.
This shows the beneficial effect of shoring in reducing the total deflection.

Checking by Eq. (18) {same solution),

A, = 3.42(A)

I
s + Ash—Il +(4y), + (Acp)f

C
= (3.42) (0.074) + 0.046 + 0.232 + 0.063 = 0.60in. (same as above)

Assuming that nonstructural elements are installed after shores are removed,

Agp + Agy + (A1), = Ay -(Ay),, = 0.60-0.07 = 0.53in.
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N Code
Example 10.7 (cont’d) Calculations and Discussion Reference

Comparison of Results of Examples 10.6 and 10.7

The computed deflections of (A;); =0.19in. in Example 10.6 and 0.23 in. in Example
10.7; and Ay, + Agy + (44), = 0.6 in. in Example 10.6 and 0.53 in. in Example 10.7 are
compared with the allowable deflections in Table 9.5(b) as follows:

Flat roofs not supporting and not attached to nonstructural elements likely to be damaged
by large deflections—-

(A, < ¢/180 = 312/180 = 1.73in. OK.

Floors not supporting and not attached to nonstructural elements likely to be damaged by
large deflections—

(A < €360 = 312/360 = 0.87in. OK.

Roof or floor construction supporting or attached to nonstructural elements likely to be
damaged by large deflections (very stringent limitation)—

Acp + Agy + (Ai)e < £/480 = 312/480 = 0.651in.
Note that the long term deflection occurring after attachment of non-structural elements
(0.66 in) exceeds the L/480 limit. It actually meets L/473. Since the L/480 limit only
applies in case of nonstructural elements likely to be damaged by large deflections, the
particular use of the beam would have to be considered in order to make a judgment on
the acceptability of the computed deflections. Refer to the footnotes following Table

9.5(b) of ACI 318

Roof or floor construction supporting or attached to nonstructural elements not likely to
be damaged by large deflections—

Acp + Ay + (Aj), < €240 = 3121240 = 130in. OK.
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11

Design for Slenderness Effects

UPDATE FOR THE ’05 CODE

Section 10.13.6 was modified to clarify the load factors to be used for investigating the strength and stability of
the structure as a whole under gravity loads in 10.13.6(a) and (b).

GENERAL CONSIDERATIONS

Design of columns consists essentially of selecting an adequate column cross-section with reinforcement to
support required combinations of factored axial loads Py, and factored (primary) moments My, including consid-
eration of column slenderness (secondary moments).

Column slenderness is expressed in terms of its slenderness ratio k¢, /r, where k is an effective length factor

(dependent on rotational and lateral restraints at the ends of the column), £, is the unsupported column length,
and r is the radius of gyration of the column cross-section. In general, a column is slender if its applicable cross-
sectional dimension is small in comparison to its length.

For design purposes, the term “short column” is used to denote a column that has a strength equal to that
computed for its cross-section, using the forces and moments obtained from an analysis for combined bending
and axial load. A “slender colurmn” is defined as a column whose strength is reduced by second-order deforma-
tions (secondary moments). By these definitions, a column with a given slenderness ratio may be considered a
short column for design under one set of restraints, and a long column under another set. With the use of higher
strength concrete and reinforcement, and with more accurate analysis and design methods, it is possible to
design smaller cross-sections, resulting in members that are more slender. The need for reliable and rational
design procedures for slender columns thus becomes a more important consideration in column design.

A short column may fail due to a combination of moment and axial load that exceeds the strength of the cross-
section, This type of a failure is known as “material failure.” As an illustration, consider the column shown in
Fig. 11-1. Due to loading, the column has a deflection A which will cause an additional (secondary) moment in the
column. From the free body diagram, it can be seen that the maximum moment in the column occurs at section
A-A, and is equal to the applied moment plus the moment due to member deflection, which is M = P(e +A).

Failure of a short column can occur at any point along the strength interaction curve, depending on the combi-

nation of applied moment and axial load. As discussed above, some deflection will occur and a “material
failure” will result when a particular combination of load P and moment M = P(e + A) intersects the strength
interaction curve.

If a column is very slender, it may reach a deflection due to axial load P and a moment Pe such that deflections
will increase indefinitely with an increase in the load P. This type of failure is known as a “stability failure,” as
shown on the strength interaction curve.



M=Pe P
Pe — PA
? A j W, -, short column
- \?’M =Ple+4) Aa material failure
I
F" e ' T~ stability failurg

LM
M
=]
Figure 11-1 Sirength Interaction for Slender Columns

The basic concept on the behavior of straight, concentrically loaded, slender columns was originally developed by
Euler more than 200 years ago. It states that a member will fail by buckling at the critical load P, = anI/(fc )2,
where El is the flexural stiffness of the member cross-section, and ¢, is the effective length, which is equal to k¢,,.
For a “stocky” short column, the value of the buckling load will exceed the direct crushing strength (corresponding
to material failure). In members that are more slender (i.e., members with larger k¢ o fr values), failure may occur
by buckling (stability failure}, with the buckling load decreasing with increasing slenderness (see Fig. 11-2).

P

ke, /fr
Figure 11-2 Failure Load as a Function of Column Slenderness

As shown above, it is possible to depict slenderness effects and amplified moments on a typical strength interaction
curve. Hence, a “family” of strength interaction diagrams for slender columns with varying slenderness ratios can
be developed, as shown in Fig. 11-3. The strength interaction diagram for k¢, /r = O corresponds to the combina-
tions of moment and axial load where strength is not affected by member slenderness (short colunmm strength).

P

Figure 11-3 Strength interaction Diagrams for Slender Columns
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CONSIDERATION OF SLENDERNESS EFFECTS

Slenderness limits are prescribed for both nonsway and sway frames, including design methods permitied for
each slenderness range. Lower-bound slenderness limits are given, below which secondary moments may be
disregarded and only axial load and primary moment need be considered to select a column cross-section and
reinforcement (short column design). It should be noted that for ordinary beam and column sizes and typical
story heights of concrete framing systems, effects of slendemness may be neglected for more than 90 percent of
columns in nonsway frames and around 40 percent of columns in sway frames. For moderate slenderness ratios,
an approximate analysis of slenderness effects based on a moment magnifier (see 10.12 and 10.13) is permitted.
For columns with high slenderness ratios, a more exact second-order analysis is required (see 10.11.5), taking
into account material nonlinearity and cracking, as well as the effects of member curvature and lateral drift,
duration of the loads, shrinkage and creep, and interaction with the supporting foundation. No upper limits for
column slenderness are prescribed. The slendemess ratio limits in 1(.12.2 for nonsway frames and 10.13.2 for
sway frames, and design methods permitted for consideration of column slenderness, are summarized in Fig. 11-4.

Sway Nonsway
Frame Frame

ke, /r <22 Neglect | keylrs
! Slenderness 34— 12(My/Mp)
Approximate 100 = kéy, /1 >
22<ké,irs |
ulr 100: Methods < 34_12(M1/M2)'

P-a <
ke, fr>100 1 ke, /r>100
! Analysis** b

* 34 - 12(M1/My) < 40
** Permitted for any slenderness ratio

%

Figure 11-4 Consideration of Column Slenderness

10.10 SLENDERNESS EFFECTS IN COMPRESSION MEMBERS
10.10.1 Second-Order Frame Analysis

The code encourages the use of a second-order frame analysis or P-A analysis for consideration of slenderness
effects in compression members. Generally, the results of a second-order analysis give more realistic values of
the moments than those obtained from an approximate analysis by 10.12 or 10.13. For sway frames, the use of
second-order analyses will generally result in a more economical design. Procedures for carrying out a second-
order analysis are given in Commentary Refs. 10.31-10.32. The reader is referred to R10.10.1, which discusses
minimum requirements for an adequate second-order analysis under 10.10.1.

If more exact analyses are not feasible or practical, 10.10.2 permits an approximate moment magnifier method
to account for column slenderness. Note, however, that for all compression members with a column slenderness

ratio (kf,/r) greater than 100 (see Fig. 11-4), a more exact analysis as defined in 10.10.1 must be used for
consideration of slenderness effects.
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10.11 APPROXIMATE EVALUATION OF SLENDERNESS EFFECTS

The moment magnificaticn factor 8 is used to magnify the primary moments to account for increased moments
due to member curvature and lateral drift. The moment magnifier & is a function of the ratio of the applied axial
load to the critical or buckling load of the column, the ratio of the applied moments at the ends of the column,

and the deflected shape of the column.
10.11.1 Section Properties for Frame Analysis

According to 10.11.1, the factored axial loads Py, the factored moments at the column ends M| and M, and the
relative lateral story deflections A, shall be computed using an elastic first-order frame analysis taking into
account cracked regions along the length of the members. It is usually not economically feasible to perform
such calculations even for small structures. Thus, the section properties given in 10.11.1 and summarized in
Table 11-1 may be used in the analysis to account for cracking. The values of E, I, and A have been chosen from
the results of frame tests and analyses as outlined in code Reference 10.33. Itis important to note that for service
load analysis of the structure, it is satisfactory to multiply the moments of inertia given in Table 11-1 by 1/0.70
= 1.43 (R10.11.1}. Also, the moments of inertia must be divided by (1 + By) in the case when sustained lateral
loads act on the structure (for example, lateral loads resulting from earth pressure) or when the gravity load
stability check made in accordance with 10.13.6 is performed.

Table 11-1 Section Properties for Frame Analysis

Modulus of Elasticity Moment of Inertia™ Area
Beams 03514
Columns 0.701g
Walls - uncracked E. from 8.5.1 0701 1.0A4
Walls - cracked 03514
Flat plates and flat slabs 02514

TDivide by( 1+ By ) when sustained lateral loads act or for stability checks made in accordance with 10.13.6.
Forservice load analyses, multiply by 1/0.70 = 1.43.

10.11.2 Radius of Gyration

In general, the radius of gyration, r, is ;Ig/ Ag . In particular, r may be taken as (.30 times the dimension in the
direction of analysis for a rectangular section and 0.25 times the diameter of a circular section, as shown in Fig, 11-5.

- Q O

r=0.3b r=025D r= |2
Ag

Figure 11-5 Radius of Gyration, r
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10.11.3, 10.12.1 Unsupported and Effective Lengths of Compression Members

The unsupported length ¢, of a column, defined in 10.11.3, is the clear distance between lateral supports as
shown in Fig. 11-6. Note that the length #,, may be different for buckling about each of the principal axes of the
column cross-section, The basic Euler equation for critical buckling load can be expressed as P, = RZEU(f e)2,
where £, is the effective length k#,,. The basic equations for the design of slender columns were derived for
hinged ends, and thus, must be medified to account for the effects of end restraint. Effective column length k7,
as contrasted to actual unbraced length ¢, is the term used in estimating slender column strength, and considers
end restraints as well as nonsway and sway conditions.

Direction
of Analysis
=3 3 s
e S S

Figure 11-6 Unsupported Length, ¢,

At the critical load defined by the Euler equation, an originally straight member buckles into a half-sine wave as
shown in Fig. 11-7(a). In this configuration, an additional moment P-A acts at every section, where A is the lateral
deflection at the specific location under consideration along the length of the member. This deflection continues to
increase until the bending stress caused by the increasing moment (P-A), plus the original compression stress
caused by the applied loading, exceeds the compressive strength of concrete and the member fails. The effective
length £, (= k4,)) is the length between pinned ends, between zero moments or between inflection points. For the
pinned condition illustrated in Fig. 11-7(a), the effective length is equal to the unsupported length £,,. If the member
is fixed against rotation at both ends, it will buckle in the shape depicted in Fig. 11-7(b); inflection points will occur
at the locations shown, and the effective length £, will be one-half of the unsupported length. The critical buckling
load P, for the fixed-end condition is four times that for 2 pin-end condition. Rarely are columns in actual struc-
tures either hinged or fixed; they are partially restrained against rotation by members framing into the colurnn, and
thus the effective length is between #,/2 and ¢, as shown in Fig. 11-7(c) as long as the lateral displacement of one
end of the column with respect 1o the other end is prevented. The actual value of the effective length depends on the
rigidity of the members framing into the top and bottom ends of the column.

lpc 1P
¥

ip = inflection point

(a) (b) (©)
Figure 11-7 Effective Length, £, (Nonsway Condition)
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A column that is fixed at one end and entirely free at the other end {cantilever) will buckle as shown in Fig. 11-8(a).
The upper end will deflect laterally relative to the lower end; this is known as sidesway. The deflected shape of
such a member is similar to one-half of the sinusoidal deflected shape of the pin-ended member illustrated in
Fig. 11-7(a). The effective length is equal to twice the actual length. If the column is fixed against rotation at both
ends but one end can move laterally with respect to the other, it will buckle as shown in Fig. 11-8(b). The effective
length £, will be equal to the actual length ¢,,, with an inflection point (ip) occurring as shown. The buckling load
of the columm in Fig. 11-8(b), where sidesway is not prevented, is one-quarter that of the column in Fig. 11-7(b),
where sidesway is prevented. As noted above, the ends of columnns are rarely either completely hinged or com-
pletely fixed, but rather are partially restrained against rotation by members framing into the ends of the columns.
Thus, the effective length will vary between ¢, and infinity, as shown in Fig. 11-8(c). If restraining members
(beams or slab) are very rigid as compared to the column, the buckling in Fig. 11-8(b) is approached. If, however,
the restraining members are quite flexible, a hinged condition is approached at both ends and the column(s), and
possibly the structure as a whole, approaches instability. In general, the effective length £, depends on the degree
of rotational restraint at the ends of the column, in this case £, < 7z < .

In typical reinforced concrete structures, the designer is rarely concerned with single members, but rather with
rigid framing systems consisting of beam-column and slab-column assemblies. The buckling behavior of a
frame that is not braced against sidesway can be illustrated by the simple portal frame shown in Fig. 11-9.
Without lateral restraint at the upper end, the entire (unbraced) frame is free to move sideways. The bottom end
may be pinned or partially restrained against rotation. '

In summary, the following comments can be made;

Pe ‘pc, | Pe

-

k T TETA
4L |
Ly P_r !iu Lo<lo< @
fes2i, o=k, |
i 4 | e
P i
Ic 1% ? Ta
{ H
@ ® © ip = inflection point
! ip
[

% I®
N

F

ge"fu lU

c c

Figure 11-8 Rigid Frame (Sway Condition)
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For compression members in a nonsway frame, the effective length £, falls between £,/2 and £, where ¢, is
the actual unsupported length of the columa.

For compression members in a sway frame, the effective length 7, is always greater than the actual length of
the column £, and may be 24, and higher. In this case, a value of k less than 1.2 normally would not be
realistic.

Use of the alignment charts shown in Figs. 11-10 and 11-11 (also given in Fig. R10.12.1) allows graphical
determination of the effective length factors for compression members in nonsway and sway frames, respec-
tively. If both ends of a column in a nonsway frame have minimal rotational stiffness, or approach y = oo, then k
= 1.0. If both ends have or approach full fixity, w=0, and k =0.5. If both ends of a column in a sway frame have
minimal rotational stiffness, or approach y = eo, then k = =0, If both ends have or approach full fixity, y= 0, then
k=1.0

An alternative method for computing the effective length factors for compression members in nonsway and
sway frames is contained in R10.12.1. For compression members in a nonsway frame, an upper bound to the
effective length factor may be taken as the smaller of the values given by the following two expressions, which
are given in the 1972 British Standard Code of Practice (ACI Refs, 10.38 and 10.39):

k = 0.7+0.05(ws + yp) <10

k = 0.85 + 0.05 y;, < 1.0

£l
——BEAMS
25

= -]
so.o\% T10 E500
10.0 1 - 10.0
5.0 5 E 50

4.0 a
3.0 109 - 3.0
20— 2.0
408
L0 - 10
0.8 - 08
0.7 - — 07
0.6 - - 05
¥ k <07 ¥g

o5 A - 05
0.4 — 0.4
0.3 — — 03
0.2 -4 Tos - 02
01+ 4 L 01
0 - Las L o

Figure 11-10 Effective Length Faciors for Compression Members in a Nonsway Frame
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where ya and g are the values of y at the ends of the column and Wiy is the smaller of the two values.

For compression members in a sway frame restrained at both ends, the effective length factor may be taken as
(ACI Ref. 10.25):

Forwy, <2, k = Mﬂjl + Yo

20

For wp, 22, k = 0941 + y

where ¥, is the average of the y values at the two ends of the column,

For compression members in a sway frame hinged at one end, the effective length factor may be taken as
(ACI Refs. 10.38 and 10.39):

k = 2.0+ 0.3y
where \ is the colummn-to-beam stiffness ratio at the restrained end.

In determining the effective length factor k from Figs. 11-10 and 11-11, or from the Commentary equations, the
rigidity (EI) of the beams (or slabs) and columns shall be calculated based on the values given in 10.11.1.

El
¥ —COLS
__fe
);EI BEAMS
x 0
] F 200 ~ @
100.0 3 B
50.0 1 100 — lgg:g
30.0- T 50 - 300
200 — 4+ a0 - 200
100 + 30 - 100
8.0 — T -
7.0 1 - &2
6.0 L 60
50 + s so0
40 —— + 20 - 4.0
3.0 . - 30
7 F
204 t - 20
i + 15
10 - 10
g~ i 1.0 — 0

Figure 11-11 Effective Length Factors for Compression Members in a Sway Frame
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10114 Nonsway Versus Sway Frames

In actual structures, there is rarely a completely nonsway or sway condition. If it is not readily apparent by
inspection, 10.11.4.1 and 10.11.4.2 give two possible ways of determining if a frame is nonsway or not. Accord-
ing to 10.11.4.1, a column in a structure can be considered nonsway if the column end moments due to second-
order effects do not exceed 5 percent of the first-order end moments. According to 10.11.4.2, it is also permitted
to assume a story within a structure is nonsway if:

ZP A
Q = VUL; zf < 0.05 Eq. (10-6)
where
Q = stability index for a story
ZP, = total factored vertical load in the story corresponding to the lateral loading case for
which ZP, is greatest (R10.11.4)
Vus = factored horizontal shear in the story
A, = first-order relative deflection between the top and bottom of the story due to V),
£; = colomn length, measured from center-to-center of the joints in the frame

Note that Eq. (10-6) is not applicable when V; = 0.

10.11.6 Moment Magnifier 5 for Biaxial Bending

When biaxial bending occurs in a column, the computed moments about each of the principal axes must be
magnified. The magnification factors 8 are computed considering the buckling load P, about each axis sepa-
rately, based on the appropriate effective lengths and the related stiffness ratios of ¢columns to beams in each
direction. Thus, different buckling capacities about the two axes are reflected in different magnification factors.
The moments about each of the two axes are magnified separately, and the cross-section is then proportioned for
an axial load P, and magnified biaxial moments.

10.12.2, 10.13.2 Consideration of Slenderness Effects

For compression members in a nonsway frame, effects of slenderness may be neglected when k¢, /r is less than
or equal to 34 - 12 (M{/M3), where M> is the larger end moment and M is the smaller end moment. The ratio
M1/M; is positive if the column is bent in single curvature, negative if bent in double curvature. Note that M
and M are factored end moments obtained by an elastic frame analysis and that the term [34-12M/M>] shall
not be taken greater than 40. For compression members in a sway frame, effects of slenderness may be ne-
glected when k¢, /r is less than 22 (10.13.2). The moment magnifier method may be used for columns with
slendemness ratios exceeding these lower limits.

The upper slenderness limit for columns that may be designed by the approximate moment magnifier method is
ké,/r equal to 100 (10.11.5). When k¢, /r is greater than 100, an analysis as defined in 10.10.1 must be used,
taking into account the influence of axial loads and variable moment of inertia on member stiffness and fixed-
end moments, the effect of deflections on the moments and forces, and the effects of duration of loading (sus-
tained load effects). Criteria for consideration of column slenderness are summarized in Fig. 11-4,

The lower slenderness ratio limits will allow a large number of columns to be exempt from slenderness consid-
eration. Considering the slenderness ratio k# /r in terms of #,/h for reciangular columns, the effects of slender-
ness may be neglected in design when £,/h is less than 10 for compression members in a nonsway frame and
with zero moments at both ends. This lower limit increases to 15 for a column in double curvature with equal
end moments and a column-to-beam stiffness ratio equal to one at each end. For columns with minimal or zero
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restraint at both ends, a value of k equal to 1.0 should be used. For stocky columns restrained by flat slab floors,
k ranges from about 0.95 to 1.0 and can be conservatively estimated as 1.0. For columns in beam-cclumn
frames, k ranges from about 0.75 to 0.90, and can be conservatively estimated as 0.90. If the initial computation
of the slenderness ratio based on estimated values of k indicates that effects of slenderness must be considered
in the design, a more accurate value of k should be calculated and slendemess re-evaluated. For a compression
member in a sway frame with a column-to-beam stiffness ratio equal to 1.0 at both ends, effects of slenderness
may be neglected when ¢,/h is less than 5. This value reduces to 3 if the beam stiffness is reduced to one-fifth of
the column stiffness at each end of the column. Thus, beam stiffnesses at the top and bottom of a column of a
high-rise structure where sidesway is not prevented by structural walls or other means will have a significant
effect on the degree of slendemess of the column.

The upper limit on the slendemess ratio of ké,/r equal to 100 corresponds to an £,/h equal to 30 for a compression
member in a nonsway frame with zero restraint at both ends. This £,/h limit increases to 39 for a column-
to-beam stiffness ratio of 1.0 at each end.

10.12.3 Moment Magnification—Nonsway Frames

The approximate slender column design equations contained in 10.12.3 for nonsway frames are based on the concept
of a moment magnifier 8,5 which amplifies the larger factored end moment My on a compression member, The
column is then designed for the factored axial load P, and the amplified moment M, where M is given by;

Me = 8yM; Eq. (10-8)
where

Bps = — B — > 10

1 - u Eq. (10-8)
0.75F,
2
n“EIl

= = Eq. (10-10
c (kfu)z q.( )

The critical load P is computed for a nonsway condition using an effective length factor k of 1.0 or less. When
k is determined from the alignment charts or the equations in R10.12, the values of E and I from 10.11.1 must be

used in the computations of ¢ 5, and ¥p. Note that the 0.75 factor in Eq. (10-9) is a stiffness reduction factor
(see R10.12.3),

In defining the critical column load P, the difficult problem is the choice of a stiffness parameter EI which
reasonably approximates the stiffness variations due to cracking, creep, and the nonlinearity of the concrete
stress-strain curve. In lien of a more exact analysis, EI shall be taken as:

(02E(, + EJ,)

Eq. (10-11
1 P, q. (10-11}
or
0.4E_I,
El = —=£ Eq. (10-12)
1 + Bd

The second of these two equations is a simplified approximation {o the first. Both eqnations approximate the
lower limits of EI for practical cross-sections and, thus, are conservative. The approximate nature of the El
equations is shown in Fig. 11-12 where they are compared with values derived from moment-curvature dia-
grams for the case when there is no sustained load (Pa=0).
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Eq. {10-11) Eq. (10-12)

Theorelical Ei
Eq. (10-71) EI
Theoretical El
Eq. (10-12) EI

Figure 11-12 Comparison of Equations for El with EI Values from Moment-Curvature Diagrams

Equation (10-11) represents the lower limit of the practical range of stiffness values. This is especially true for
heavily reinforced columns. As noted above, Eq. (10-12) is simpler to use but greatly underestimates the effect
of reinforcement in heavily reinforced columns (see Fig. 11-12).

Both EI equations were derived for small e/h values and high P,/P, values, where the effect of axial load is most
pronounced. The term P, is the nominal axial load strength at zero eccentricity.

For reinforced concrete columns subjected to sustained loads, creep of concrete transfers some of the load from
the concrete to the steel, thus increasing steel stresses. For lightly reinforced columns, this load transfer may
cause compression steel to yield prematurely, resulting in a loss in the effective value of EI. This is taken into
account by dividing EI by (1 + 84). For nonsway frames, f4 is defined as follows (see 10.11.1):

By= Maximum factored axial sustained load
d Maximum factored axial load associated with the same load combination

For composite columns in which a structural steel shape makes up a large percentage of the total column cross-
section, load transfer due to creep is not significant. Accordingly, only the EI of the concrete portion should be

reduced by (1 + Bg) to account for sustained load effects.

The term Cp, is an equivalent moment correction factor. For members without transverse loads between sup-
ports, Cpp 15 (10.12.3.1):

Cnh=06+04 [%) 204 Eq. (10-13)
2

For members with transverse loads between supports, it is possible that the maximum moment will occur at a
section away from the ends of a member. In this case, the largest calculated moment occurring anywhere along
the length of the member should be magnified by &y, and Cp, must be taken as 1.0. Figure 11-13 shows some
values of Cyy,, which are a function of the end moments.

If the computed column moment M in Eq. (10-8) is small or zero, design of a nonsway column must be based
on the minimum moment My jy;, (10.12.3.2):

M2 min = Py (0.6 + 0.03h) Eq. (10-14)

For members where Mz min > M2, the value of Cy, shall either be taken equal to 1.0, or shall be computed by
Eq. (10-13) using the ratio of the actual computed end moments M; and M.
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Mg Mg Mo
Cp=1.0 Cp=06 Cm=04
M2=M1 M1 =0 M1 =M—22

Figure 11-13 Moment Factor Cy,

10.13.3 Moment Magnification—Sway Frames

The design of sway frames for slenderness consists essentially of three steps:

1.

The magnified sway moments 8,M; are computed in one of three ways:
a. A second-order elastic frame analysis (10.13.4.1)
b. An approximate second-order analysis (10.13.4.2)

c. An approximate magnifier method given in earlier ACI codes (10.13.4.3)

The magnified sway moments 8, M are added to the unmagnified nonsway moments My at each end of the
coluomn (10.13.3):

M = Mjps + M, Eq. (10-15)

Mz = Maps + 8 Mo, Eq. (10-16)

The nonsway moments M, and M3, are computed using a first-order elastic analysis.

If the coluinn is slender and subjected to high axial loads, it must be checked to see whether moments at
points between the column ends are larger than those at the ends. According to 10.13.5, this check is
performed using the nonsway magnifier &, with P, computed assuming k = 1.0 or less.

10.13.4 Calculation of 5,M,

As noted above, there are three different ways to compute the magnified sway moments d;M,. If a second-order
elastic analysis is used to compute 8;Mj, the deflections must be representative of the stage immediately prior to
the ultimate load. Thus, the valves of EI given in 10.11.1 must be used in the second-order analysis. Note that
I must be divided by (1 + Bq) where for sway frames, [i4 is defined as follows (see 10.11.1):

Ba= Maximum factored sustained shear within a story
Maximum factored shear in that story

For wind or earthquake loads, B3 = 0. An example of a non-zerc By may occur when members are subjected to
earth pressure.
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Section 10.13.4.2 allows an approximate second-order analysis to determine 8;M,. In this case, the solution of
the infinite series that represents the iterative P-A analysis for second-order moments is given as follows:

8M, = > M, Eq. (10-17)

where

Q = stability index for a story

= Eq. (10-6)

Note that Eq. (10-17) closely predicts the second-order moments in a sway frame until 8 exceeds 1.5. For the
case when 8¢ > 1.5, 8M; must be computed using 10.13.4.1 or 10.13.4.3.

The code also allows 8M to be determined using the magnified moment procedure that was given in previous
AClI codes (10.13.4.3):

o.M, = Eg. (10-18)

where
2P, = summation of all the factored vertical loads in a story

summation of the critical buckling loads for all sway-resisting columns in a story

zP,

It 1s important to note that the moment magnification in the columns farthest from the center of twist in a
building subjected to significant torsional displacement may be underestimated by the moment magnifier proce-
dure. A three-dimensional second-order analysis should be considered in such cases.

10.13.5 Location of Maximum Moment

When the unmagnified nonsway moments at the ends of the column are added to the magnified sway moments
at the same points, one of the resulting total end moments is usually the maximum moment in the column.
However, for slender columns with high axial loads, the maximum moment may ¢ccur between the ends of the
column. A simple way of determining if this situation occurs or not is given in 10.13.5: if an individual com-
pression member has

EE > 33 Eq. (10-19)
: ,

fiA,

the maximum moment will occur at a point between the ends of the column. In this case, Ms, which is defined
in Eq. (10-16), must be magnified by the nonsway moment magnifier given in Eq. (10-9). The column is then

designed for the factored axial load Py and the moment M., where M, is computed from the following:

M =8,sMz = 855(Mans+5sMoas) Eq. (10-8)
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Where:

0.75P,

Note that to calculate 8y, k is determined according to 10.12.1 and 8, = 1.0, and M and M3 given by Egs. (10-
15), (10-16) are used to calculate C according to Eq. (10-13).

10.13.6 Structural Stability Under Gravity Loads

For sway frames, the possibility of sidesway instability of the structure as a whole under factored gravity loads must
be investigated. This is checked in three different ways, depending on the method that is used in determining M.

1. When 8,M, is computed by a second-order analysis (10.13.4.1), the following expression must be satisfied:

Second-order lateral deflections <25

First-order lateral deflections

Note that these deflections are based on the applied loading of 1.2Pp and 1.6P, plus factored lateral load.
The frame should be analyzed twice for this set of applied loads: the first analysis should be a first-order
analysis and the second should be a second-order analysis. The lateral load may be the actual lateral loads
used in design or it may be a single lateral load applied to the top of the frame. In any case, the lateral load(s)
should be large enough to give deflections that can be compared accurately.

2. When 8;M; is computed by the approximate second-order analysis (10.13.4.2), then

Q = ZPu8q < 0.60
Vusfc

where the value of Q is evaluated using 1.2Pp and 1.6P;. Note that the above expression is equivalent to
8 = 2.5. The values of V ;s and A, may be determined using the actual or any arbitrary set of lateral loads.
The above stability check is satisfied if the value of Q computed in 10.11.4.2 is less than or equal to 0.2.

3. When 8M; is computed using the expressions from previous ACI codes (10.13.4.3), the stability check is
satisfied when

0<d <25

In this case, ZP, and ZP, correspond to the factored dead and live loads.

It is important to note that in each of the three cases above, B4 shall be taken as the following:

Maximum factored sustained axial load
Maximum factored axial load

Ba=

10.13.7 Moment Magnification for Flexural Members

The strength of a laterally unbraced frame is governed by the stability of the columns and by the degree of end
restraint provided by the beams in the frame. If plastic hinges form in the restraining beams, the structure
approaches a mechanism and its axial load capacity is drastically reduced. Section 10.13.7 requires that the
restraining flexural members (beamns or slabs) have the capacity to resist the magnified column moments. The
ability of the moment magnifier method to provide a good approximation of the actual magnified moments at the
member ends in sway frame is a significant improvement over the reduction factor method for long columns
prescribed in earlier ACI codes to account for member slenderness in design.
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SUMMARY OF DESIGN EQUATIONS

A summary of the equations for the design of slender columns subjected to dead, live and lateral loads, in both
nonsway ard sway frames is presented in this section. Examples 11.1 and 11.2 illustrate the applicaticn of these
equations for the design of columns in nonsway and sway frames, respectively.

¢ Nonsway Frames

L.

Determine the factored load combinations per 9.2.

It is assumed in the examples that follow that the load factor for live load is 0.5 (i.e. condition 9.2.1(a)
applies) and that the wind load has been reduced by a directionality factor (9.2.1(b}).

Note that the factored moments My, yop and My o at the top and bottom of the column, respectively, are to be
determined using a first-order frame analysis, based on the cracked section properties of the members.

For each load combination, determine M., where M., is the largest factored column end moment, including
slenderness effects (if required). Note that M, may be determined by one of the following methods:

a. Second-order (P-A) analysis (10.10.1)
b. Magnified moment method (only if ké, /r < 100; see 10.12 and step (3) below)

Determine the required colurmn reinforcement for the critical load combination determined in step (1) above.
Each load combination consists of P, and M.

Magnified moment method (10.12):

Slenderness effects can be neglected when

Kby < 34 - 12(&} Eq. (10-7)
r 2

where [34-12 M /M3 ] £40. The term M/M; is positive if the column is bent in single curvature, negative
if bent in double curvature. If M = M = 0, assume M3 = M2 mip. In this case ké,/r = 34.0.

When slenderness effects need to be considered, determine M., for each load combination:
M, = & M> Eq. (10-8)
where

My = larger of My pot and My top

= Py (0.6 + 0.03h) 10.12.3.2

6 Cm > E 10-9

— —p 2 1.0 q. (10-9)
© 0.75P,
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or

7Bl

P = Eg. (10-10)
¢ (ke,)’ :
02E.1, + E.I
El = (©-2El, slse) Eq. (10-11)
1 + Bd
O.4ECIg
El = —<& Eq. (10-12)
1 + Bd
By = Maximum factored axial sustained load 10.11.1
d= Maximum factored axial load associated with the same Ioad combination o
M, )
Cnh = 06+04 YR 204 ({for columns without transverse loads) Eqg. (10-13)
2

= 1.0 (for columns with transverse loads)

The effective length factor k shall be taken as 1.0, or may be determined from analysis (i.c., alignment chart or
equations given in R10.12.1). In the latter case, k shall be based on the E and I values determined according to

10.11.1 (see 10.12.1).

* Sway Frames

1. Determine the factored load combinations per 9.2.

a.

Gravity (dead and live) loads

The moments (M pot)ns and (My top)ns at the bottom and top of column, respectively, are to be
determined using an elastic first-order frame analysis, based on the cracked section properties of
the members.

The moments M and M are the smaller and the larger of the moments (My hotdns and (My topdns,
respectively. The moments M5 and Moy are the factored end moments at the ends at which

M and Mj act, respectively.
Gravity {dead and live} plus lateral loads

The total moments at the top and bottom of the column are My, top = (Muy,top)ns + (Muy,top)s and
My bot = My bothns + (Muy pot)s: respectively. The moments M and M are the smaller and the
larger of the moments My 1op and My por, respectively. Note that at this stage, M; and My do not
include slenderness effects. The moments M, and M are the factored nonsway and sway
moments, respectively, at the end of the column at which M acts, while My and My are the
factored nonsway and sway moments, respectively, at the end of the column at which My acts.

Gravity (dead) plus lateral loads
The definitions for the moments in this load combination are the same as given above for part 1(b).

The effects due to lateral forces acting equal and opposite to the ones in the initial direction of
analysis must also be considered in the load combinations given in parts 1(b) and 1(c) above.
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Determine the required column reinforcement for the critical load combination determined in step (1)
above. Each load combination consists of P, M1, and My, where now My and M, are the total factored
end moments, including slenderness effects. Note that if the critical load Py is computed using EI from
Eq. (10-11), it is necessary to estimate first the column reinforcement. Moments M and M, are deter-
mined by one of the following methods:

a. Second-order (P-A) analysis (10.10.1)
b. Magnified moment method {only if ké,/r < 100; see 10.13 and step 3 below)
Magnified moment method (see 10.13):

Slenderness effects can be neglected when

1_(£L < 22 10.13.2
r

When slenderness effects need to be constdered:
M; = Mjpe + 3 M, Eq. (10-15)
Mz = Mays + S My, Eq. {10-16)
The moments 3; M5 and 8;My; are to be computed by one of the following methods (10.13.4):

a. Second-order elastic analysis (see 10.13.4.1)

b, Approximate second-order analysis (10.13.4.2)
MS

M, = o > M, 10<8,<15 Eq. (10-17)
where
SP.A
Q = %= Eq. (10-6
Vool o q. (10-6)

M, = —--M—}S:P— > M, Eq. (10-18)
_ u
0.75ZP,
where
2
P, = (;_,E)Iz Eq. (10-10)
a
02E.1, + EJI :
El = ( ;iﬁ slse) Eq. (10-11)
d
ar
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0.4E L
1 + Bg

Eq. (10-12)

9]
=
|

The effective length factor k must be greater than 1.0 and shall be based on the E and I values
determined according to 10.11.1 (see 10.13.1).

4. Check if the maximum morrent occurs at the ends of the column or between the ends of the column (10.13.5). If

o, 30 Eq. (10-19)
r

the column must be designed for the factored axial load Py and the moment M, where
M =8pMg = Sns(M 2ns"'53M25)
where

B =
1

"~ 0.75P,

To calculate 8¢ k is determined according to the provisions in 10.12.1 and 85 2 1.0 and M and M given by
Eqs. (10-15), (10-16) are used to calculate Cp, according to Eq. (10-13).

5. Check the possibility of sidesway instability under gravity loads (10.13.6):
a. When §;M; is computed from 10.13.4.1:

Second-order lateral deflections
First-order lateral deflections

A

2.5

based on factored dead and live loads plus factored lateral oad.
b. When 8 M, is computed from 10.13.4.2:

Q = Zh4, < 0.60
\Y

usc

based on factored dead and live loads.
c.  When 8 M; is computed from 10.13.4.3:
0< §, =25
where 8, is computed using 2P, and XP corresponding to the factored dead and live loads.

In all three cases, By shall be taken as:

Maximum factored sustained axial load
Mazximum factored axial load

Ba=
Reference 11.1 gives the derivation of the design equations for the slenderness provisions outlined above.
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Example 11.1—Slenderness Effects for Columns in a Nonsway Frame

Design columns A3 and C3 in the first story of the 10-story office building shown below. The clear height of the
first story is 21 ft-4 in., and is 11 ft-4 in. for all of the other stories. Assume that the lateral load effects on the ;
building are caused by wind, and that the dead loads are the only sustained loads. Other pertinent design data for

the building are as follows:
Material properties:

Concrete:
Floors: f{ =4,000 psi, w, = 150 pcf

28-0"

Columns and walls: f] = 6,000 psi, w, = 150 pcf
Reinforcement: fy = 60 ksi ©) ® @
Beams: 24 x 201in.
Exterior columns: 20 x 201in.
Interior columns: 24 x 24 in. 28-0" 280" 28-0° 280"
Shearwalls: 12 in.
@ - -8 ----H----}
Weight of floor joists = 86 psf 5 CITIIN oists 4:-[-:F
Superimposed dead load = 32 psf x L {typ.) 1 ! ¥
Roof live load = 30 psf ® S
Flocr live load = 50 psf o |
Wind loads computed according & :
to ASCE 7. ©r =
° )
g 1
by 1
56 1
(Y] 3
E&— = N
= E
& :
G ==
- R -
ol 1
) s
7oL
ol s | |[
o, | |
JO I ] |
| | |
2o L
D Gn i
ll__'

5 @280"=140-0"
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Example 11.1 {(cont’d)

Calculations and Discussion

Code
Reference

1.

Factored axial loads and bending moments for columns A3 and C3 in the first story

Column A3
Bending Moment
Load Case Axial Load {ft-kips)
(kips) Top Bottom
Dead (D) 718.0 79.0 40.0
Live (L)* 80.0 30.3 15.3
Roof live load (L,) 12.0 0.0 6.0
Wind (W) +8.0 *1.1 +4.3
£q. No. |Load Combination
9-1 1 1.4D 1,005.2 110.6 56.0
9-2 2 1.2D + 1.6L + 0.5L, 995.6 143.3 725
3 1.2D + 0.5L + 1.6L, 920.8 110.0 557
9-3 4 1.2D + 1.6L, + 0.8W 887.2 957 51.4
5 1.2D + 1.6L, - 0.8W 874.4 83,9 44 .6
9.4 6 1.2D + 0.5L + 0.5, + 1.6W 9204 111.7 62.5
7 1.2D0 + 0.5L + 0.5L, - 1.6W 894.8 108.2 48.8
9-6 8 109D + 1.6W 659.0 72.9 42.9
9 0.9D - 1.6W 633.4 69.3 29.1
*includes live foad reduction per ASCE 7
Column C3
Bending Moment
Load Case Axial Load {ft-kips)
(kips) Top Bottom
Dead (D) 1,269.0 1.0 0.7
Live {L)* 147.0 324 16.3
Roof live load (L) 24.0 0.0 0.0
Wind (W) +3.0 +2.5 7.7
Eq. No. |Load Combination
8-1 1 1.4D 1,776.6 1.4 1.0
9-2 2 1.2D + 1.6L + 0.5, 1,770.0 53.0 26.9
3 1.2D + 0.5L + 1.6L, 1,634.7 17.4 8.0
g9-3 4 1.2D + 1.6L, + 0.8W 1,563.6 3.2 7.0
5 1.2D + 1.6L, - 0.8BW 1,558.8 -0.8 -5.3
94 6 1.2D + 0.5L + 0.5L, + 1.6W 1,613.1 214 21.3
7 1.2D + 0.5L + .50, - 1.6W 1,603.5 134 -3.3
9-6 8 109D + 1.6W 1,146.9 4.9 13.0
8 ]0.8D - 1.6W 1,137.3 -3.1 -11.7

*includes live load reduction per ASCE 7

Note that Columns A3 and C3 are bent in double curvature with the exception of Load Case 7

for Column C3.

Determine if the frame at the first story is nonsway or sway

The resulis from an elastic first-order analysis using the section properties prescribed in

10.11.1 are as follows:

2P, = total vertical load in the first story corresponding to the lateral loading case for which
ZP, is greatest
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Example 11.1 (cont’d) Calculations and Discussion

Code
Reference

The total building loads are: D = 37,371 kips, L. = 3609 kips, and L, = 605 kips.
The maximum ¥ P, is determined from Eq. (9-4):

¥P, = (1.2 x 37,371) + (0.5 x 3609) + (0.5 x 605) + O = 46,952 kips

Vs = factored story shear in the first story corresponding to the wind loads
= 1.6 x 324.3 = 518.9kips

Eq. (9-4), (9-6)

Ay =first-order relative lateral deflection between the top and bottom of the first story due to Vg

= 1.6 x (0.03-0} = 0.05in.

SPA, 46,952 x 0.05

= = 0.02 < 0.05
Vsl ¢ 518.9 x [(23 x 12)-(20/2)]

Stability index Q =

Since Q < 0.05, the frame at the firs( story level is considered nonsway.
3. Design of column C3

Determine if slenderness effects must be considered.

Using an effective length factor k = 1.0,

Ky _ 10x238x12 _ oo

r 03 x 24

The following tabie contains the slenderness limit for each load case:

Eq. (10-6)

10.11.4.2

fo.12.1

2
obtained from load combination no. 7:

Axizal loads Bending Moment

Eq. No {kips) (ft-kips) Curvature M, M, M;/M. | Slenderness
P, Miop Maot (ft-kips) | (ft-kips) limit
g9-1 1 1776.6 1.4 1.0 Double 1.0 1.4 0.70 40.00
9-2 2 1770.0 53.0 26.9 Double 26.9 53.0 0.51 40.00
3 1634.7 17.4 9.0 Double 9.0 17.4 0.52 40.00
8-3 4 1564.2 3.7 8.5 Double 3.7 8.5 0.43 39.20
5 1558.2 -1.3 -6.9 Doukle 1.3 6.9 0.19 36.27
9-4 6 1613.1 21.4 21.3 Double 21.3 21.4 1.00 40.00
7 1603.5 13.4 -3.3 Single 3.3 13.4 -0.25 31.02
9-6 8 1146.9 4.9 13.0 Doubie 4.9 13.0 0.38 38.54
B 9 1137.3 -3.1 -i1.7 Doubie 3.1 11.7 0.27 37.18

( M, .
The least value of 34 —12] — | is

3412 [ ML 234-12(£ =31.02 <40
M, 134
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Code
Example 11.1 (cont’d) Calculations and Discussion Reference

Slenderness effects need to be considered for column C3 since k¢, /1 > 34 - 12 (M /M,). 10.12.2

The following calculations illustrate the magnified moment calculations for load combination no. 7:
M= 8nsM2

where

_ n2E1
¢T3
(ky)
, 02E 1, +El,
T 1+By

6000

E,=57,000
1000

=4415 ksi

4
I, =2 =27,648 in*
12

E =29,000 ksi

Assuming 16-No. 7 bars with 1.5 cover to No. 3 ties as shown in the figure,

fﬁ' F...

2.00 ‘. 24"

716"

2317 |
I‘ ® [ ] ® L J i
2 il

1.5" clear cover to No. 3 ties

T
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Code
Reference

Example 11.1 (cont’d) Calculations and Discussion

I =2|(5 x 0.6)21.69-12)° +(2 x 0.6)(16.84~12)’]

=619.61in4

Since the dead load is the only sustained load,

B, = 1.2Pp
471 2Py +0.5P +0.5P  —1.6W

_ 1.2 x 1269
T {12 x 1269)+(0.5 x 147)+(0.5 x 24)—(1.6 x 3)

=0.95

2 % 4415 x 27,648)+(29,000 X 619. o
g1 02 x 4415 x 21 02}5( X 6196) 5173 x 105 kip-in?
+ 0.

2 6
_RTx 21.73 x 1()2 — 3274 kips
{1 x 2133 x 12)

P,

0.7
Ons = 1603.5 =2.02

075 x 3274

Check miminum moment requirement:
M3 min =P, (0.6+0.03h)
=1603.5[0.6 +(0.03 x 24)]/12
=176.4 ft-kip > M,

M. =2.02 x 176.4=356.3 ft-kip

The following table contains results from a strain compatibility analysis, where
compressive strains are taken as positive (see Part 6 and 7).

Therefore, since IM >M for all fP =P, use a 24 3 24 in. column with 16-No. 7 bars (rg = 1.7%).
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Example 11.1 {(cont’d) Calculations and Discussion Reference
NO Pu Mu C Et (1) q)Pn q)Mn
" | (kips) | (ft-kips) (in) (kips) | (ft-kips)
1 1776.6 1.4 2592 0.00049]  0.65 1776.6 367.2
2 1770.0 53.0 25.83 0.00048] 0.65] 1770.0 371.0
3 1634.7 17.4 23.86 0.00027| 0.65 1634.7 447.0
4 1563.6 7.0 22.85 0.00015] 0.65 1563.6 480.9
5 1558.8 5.3 22.78 0.00014]  0.65 1558.8 483.2
6 1613.1 21.4 23.55 0.00024| 0.65] 1613.1 457.8
7 1603.5]  356.3 23.41 0.00022| 0.65 1603.5 462.5
8 1146.9 13.0 17.25]  -0.00077] 0.65 1146.9 609.9
9 1137.3 1.7 17.13] _ -0.00080] 0.865 1137.3 611.7

Design for Py = and M¢ = can be performed manually, by creating an interaction diagram as shown in example
6.4. For this example, Figure 11-14 shows the design srength interaction diagram for Column C3 obtained from
the computer program pcaColumn. The figure also shows the axial load and moments for all load combinations.

4. Design of column A3

a.

Determine if slenderness effects must be considered.

Determine k from the alignment chart of Fig. 11-10 or from Fig, R10.12.1:

4
Lo=07| 2% =9333in4
12
E, = 57,000 -—-—-———“166(();3;) = 4,415 ksi

For the column below level 2:

E.I 4,415 % 9,333 3 1
ec = [(23 x 12) _(2012)] =155 X% 107 in.-kips

For the column above level 2:

[Esl) = AA15%9.333 _ ) 108 in.-kips

£ 13%12
4 3 ,
Tpeam = 0.35 (%} = 5,600 in. 4

BI _ 574,000 xS5,600_ s

¢ 28 %12

in.-kips

TEI/4;. 155+264
WA = = =
ZEI/¢ 60

7.0
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Reference

Calculations and Discussion

Exampie 11.1 (cont’d)
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Figure 11-14 Interaction Diagram for Column C3
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Example 11.1 {cont’d) Calculations and Discussion Reference

Assume yg = 1.0 (column essentially fixed at base)

From Fig. R10.12.1(a), k = 0.86.

Therefore, for column A3 bent in double curvature, the least 34 — 12[%} 1s obtained from

load combination no. 9: 2

34-12 Z221) _ 399
693

ke _ 086x2UBx12_
T 03x20 /<7

For column A3 bent in single curvature, the least 34— 12[%) 18 obtained from load

. 2
combination no. &:

ke, 367> 3 429
=36 >34-12 ““““72‘9 =269

Therefore, column slenderness need not be considered for column A3 if bent in double
curvature. However, to illustrate the design procedure including slenderness effects
for nonsway columns, assume single curvature bending.

Determine total moment M, (including slenderness effects) for each load combination.

M; = &;sM; Eq. (10-8}
where

C
Bpe = - T 2 10

0.75F, Eq. (10-9)

The following table summarizes magnified moment computations for column A3 for all load
combinaticns, followed by detailed calculations for combination no. 6 to illustrate the procedure.

No Pu M, b El x 10° P, Co d,, M. M.

"~ | {kips) | {ft-kips) (kip-in®) | kips {ft-kips} | (fi-kips)
1 1005.2 110.6 1.00 9.88] 2013 0.80 2.40 100.5 265.6
2 895.6 143.3 0.87 10.60|] 2158 0.80 2.08 99.6 298.6
3 920.8 110.0 0.94 10.21] 2080 0.80 1.96 92.1 215.3
4 887.2 95.7 0.97 10.03] 2042 0.82 1.94 88.7 185.3
5 874.4 93.9 0.99 9.96] 2028] 0.79 1.86 874 174.5
6 920.4 111.7 0.94 10.21] 20791  0.82 2.01 920 224 6
7 894.8 108.2 0.96 10.07] 2051 0.78 1.87 89.5 201.8
8 659.0 72.9 0.98 9.98] 2033 0.84 1.47 65.9 107.2
9 633.4 69.3 1.00 9.89] 2014 0.77 1.32 63.3 91.7
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Example 11.1 (cont’d) Caiculations and Discussion Reference
Load combination no. 6:
U = 1.2D + 05L + 0.5L, + 1.6W
My
Cmn= 06+04|—-| =04 Eq. (10-13)
M,
— o . 62,5)
= 06+04 |77 )= 082
2
m“EIl
P. = Eq. (10-10
c (kfu)z q.( )
0.2E.I, + EI
El = (02Bcly + Esle) Eq. (10-11)
1+ Bg
Eo=57,000 Y2900 _ 4 415ksi 8.5.1
4
I, = 2 133330
12
E, = 29,000 ksi 852

Assuming 8-No. & bars with 1.5 in. cover to No. 3 ties:

2
Le = 2{(3 x 0.79)(-229 ~1.5-0.375- }_.;)_0} ] =276 in.*

Since the dead load is the only sustained load,

B, = 1.2P,
47 12P, +0.5P, +0.5P +1.6P,,
_ 1.2x 718 094
T (12%x718) +(0.5%80) +(0.5x12) +(1.6x8)
El— (0.2x 4,415%13,333)+ (29,000 x 276)

1+0.94
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Example 11.1 (cont’d) Calculations and Discussion

Coade
Reference

TR S sl e e e

R Gl T R

From Eq. (10-12):

0.4E,1,
1 + Bd

El =

_ 0.4x%4,415x13,333

=12.14 x 106 kip-in.2
1+0.94 PR

Using EI from Eq. (10-10), the critical load P, is:

7% x10.21x10°

P =
(0.86x21.33x12)

=2,079 kips

2

Therefore, the moment magnification factor &, is:

0.82
— 9304
0.75% 2,079

Sns = =201

Check minimum moment reguirement:

My min = Py (0.6 + 0.03h)

I

920.4 [0.6 + (0.03 x 20)}/12

92.0 ft-kips < Mz = 111.7 ft-kips
Therefore,
M, = 2.01 x 111.7 = 224.6 ft-kips
c. Determine required reinforcement.
For the 20 x 20 in. column, try §-No. 8 bars.
Determine maximum allowable axial compressive force, ¢Pp max:

OPomax = 0.800 [0.856(A, - Ay ) + fA,]

(080 x0.65)[(0.85 x 6)(207~6.32) + (60 x 6.32)]

1,241 .2 kips > maximum P, = 1,005.2 kips O.K.
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Example 11.1 (cont’d)

Calculations and Discussion

Code
Reference

The following table contains results from a strain compatibility analysis, where
compressive strains are taken as positive (see Parts 6 and 7).

17.625" P . . F
s @ 20"
2.375" _1. . g ——J
| 20" |
| — 1
No PI.I Mu C et ¢Pn ¢Mn
’ {kips) (ft-kips) {in.) {kips) (ft-kips)
1 1,005.2 265.6 17.81] 0.00003 0.65] "1,005.2 298.0
2 995.6 298.6 17.64] 0.00000 0.65 995.6 301.1
3 920.8 215.3 16.42] -0.00022 0.65 920.8 321.4
4 887.2 185.3 15.88] -0.00033 0.65 887.2 329.3
5 874.4 174.5 15.67] -0.00037 0.65 B74.4 332.1
5 920.4 224.6 16.41] -6.00022 0.65 920.4 321.6
7 894.8 201.8 16.00| -0.00030 0.65 894.8 327.6
8 659.0 107.2 12.36| -0.00128 0.65 659.0 364.8
9 633.4 92.4 12.00] -0.00141 0.65 633.4 367.

Therefore, since $M;, > M, for all ¢P, = Py, use a 20 X 20 in. column with 8-No. 8 bars (pg = 1.6%). Figure 11-15
obtained from pcaColumn 11,2, contains the design strength interaction diagram for Column A3 with the factored
axial loads and magnified moments for all load combinations.
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Reference

Calculations and Discussion

Example 11.1 (cont’d)
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Figure 11-15 Design Strength Interaction Diagram for Column A3
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Example 11.2—Slenderness Effects for Columns in a Sway Frame

Design columns C1 and C2 in the first story of the 12-story office building shown below. The clear height of the
first story is 13 ft-4 in., and is 10 ft-4 in. for all of the other stories. Assume that the lateral load effects on the
building are caused by wind, and that the dead loads are the only sustained loads. Other pertinent design data for
the building are as follows:

Material properties:

Congcrete: = 6,000 psi for columns in the bottom two stories (w, = 150 pef)
=4 000 psi elsewhere (w. = 150 pcf)
Reinforcement: fy = 60 ksi

Beams: 24 X 201in.
Exterior columnns: 22 X 22 in.
Interior columns: 24 X 24 in.

Superimposed dead load = 30 psf ? 240" 540" ? 240" @ od-0" ? 240" SFD
Roof live load = 30 psf
Floor live load = 50 psf #___]‘___#___ ___#_...4;
I ! | I I
|
|

Wind load ted ©
according to KI;SE7 g ; : I[ : l’ : : : II —_—
@.—jl:::f”::::ht:::! l:::fﬂ::";zl
s'r | 11 I 1 || | | T
NI R e EB
2 T
% I | | | I
o ! | ] ] |
O s ¥ Sty ¥ RS |
T ] ]
I[ I H ||F {
o NC_1C__ 1] |
W, | I !
ol [ [ | ]
sl Ll || L || |
=L 1 || || |
M [ I || | ]
A | 1L | | |
R || IC 1] Il |
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Code
Example 11.2 (cont’d) Calculations and Discussion Reference
1. Factored axial loads and bending moments for columns C1 and C2 in the first story
Since this is a symmetrical frame, the gravity loads will not cause appreciable sidesway.
Column_C1
Bending moment
Load Case Axial Load (ft-kips)
(Kips) Top | Bottom
Dead (D) 622.4] 348| 176
Live (L)* 73.9] 154 7.7
Roof live load {L,) 8.6 0.0 0.0
Wind (W) {N-5) -48.3[ 17.1] 138.0
Wind (W) (S-N} 48.3] -17.1] -138.0
Neo. |Load Combination M, M. Mins Mars My, Mz
9-1 1 |14D 871.4] " 487] 246 248] 487 246] 487 ——— ] ——=
9-2 2 J12D+16L + 051, 869.4| 66.4| 334| 33.4| 664 334 eeaf —__| -__
3 [12D+05L + 18, 797.6] 49.5) 250] 250 495 250] 495 - -] —_—
9.2 4 [12D+16L +08W 7220] 554] 131.5] 554 131.5] 41.8] 21.4] 13.7] 11042
5 [1.2D+ 1.6L, - 0.8W 799.3] 28.1] -88.3] =2a.1| -89.3] a1.8] 214 -1a7| 1104
0.4 6 [1.2D + D.5L + 0.5L, + 1.6W 710.9] 76.8] 245.8] 76.8] 245.8] 49.5] 25.0] 274 2208
7 [12D+05L +05L - 1.8W 8654| 22.1] -195.8] 22.1| -195.8] 49.5] 250 -274] 2208
o0s 8 [0.80 + 1.8W 482.9] "58.7] 236.6] 58.7] 236.6] 31.3| 15.8] 27.4] 2208
i 9 [0.80- 16w 6374] 40| -2050] 4.0 -205.0] s1.3] 158 -27.4] 2208
*includes live foad reduction per ASCE 7
Column C2
Bending moment
Load Case Axial Load (ft-kips)
{Kips) Top Bottom
Dead (D) 10876 -20[ -1.0
Live (L) 1345 -158] 7.8
Roof live load (L.} 17.3 0.0 0.0
Wind {W) (N-5) 0.3} 43.5 205.0
Wind (W) (8-N) 0.3/ -43.5] -205.0
No. [Load Combination M M. M1ne M., M. Mo
91 1_11.4D 1522.6] 28] 14| 4] 28] -14] 2B ——-] <——
9-2 2 [1.2D + 1.6L - 0.5L, 1.529.0) -27.4| -13.7] -13.7| -o74| 137] ovaf - _C
3 [12D+05L+ 161, 1,400 -10.2] 61| 51| -102] 5] -102] ——- 0.0
9-3 4 [1.2D0+18L + 08w 1.3326] 32.4| 162.8] a324] 162.8] -24] -12] 348] 1840
5 |1.2D + 16L, - 0.8W 1,333.0) -37.2] -165.2| -37.2| -165.2] -2.4] 12| -3a8| 1640
04 6 {120+05L+05L +16W| 13805 59.4| 322.9] 594] 322.9] -10.2] 51| e96] 3280
7 |1.2D + 0.5L + 0.5, - 1.6W 1,381.5] -79.8| -333.1] -79.8| -333.1] -10.2 -5.1] -69.8| -328.0
o6 8 _ 09D + 1.6W 9784] 67.8] 827.1| 678 327.1] 1.8] 09 69.6] 328.0
9 |0.90- 18W 979.3] -714] -328.8] -714| 3289] 1.8 -0.9] -69.6] -328.0
*includes live load reduction per ASCE 7
; 2. Determine if the frame at the first story is nonsway or sway
The results from an elastic first-order analysis using the section properties prescribed in
10.11.1 are as follows:
2Py = total vertical load in the first story corresponding to the lateral loading case for
which P, is greatest
The total building loads are: D = 17,895 kips, L= 1,991 kips, Iy =270 kips. The maximum
2P, is from Eq. (9-4):

2Py =(1.2 X 17,895) + (0.5 X 1,991) + (0.5 X 270) + 0 = 22,605 kips
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Code
Example 11.2 {cont’d}) Calculations and Discussion Reference
Vus = factored story shear in the first story corresponding to the wind loads
=1.6 X 302.6 =484.2 kips Eq. (3-4), (9-6)
Ay = first-order relative deflection between the top and bottom of the first story due to V,,
=1.6x{0.28 -0)=0.45in.
Stability index Q = ZP4, = 22,605 x 0.45 = 0.12 > 0.05 Eg. (10-6)
Vs ¢ 4842 x [(15 x 12) - (20/2)] :
Since @ > 0.05, the frame at the first story level is considered sway. 10.11.4.2
3. Design of column C1
a.  Determine if slenderness effects must be considered.
Determine k from alignment chart in R10.12.1.
4
Lo=0.7 2 . 13,665 in.4 10.11.1
12
E¢ = 57,000 ¥6.000 _ 4,415 ksi 8.5.1
For the column below level 2:
E.l 4,415 x 13,665 3. .
— = e = 335 x 10° in.-k
2, (15x 12) - 10 s
For the column above level 2:
E.I 4,415 x 13,665 3. .
_— = —— = 41 X 10 .'k.l
2 12 x 12 ? H.ps
3
Tocam = 0.35 (%} = 5,600 in. 4 10.11.1
I N
For the beam: Ed = 374,000 5,600 = 70 x 10? in.-kips
I 24 x 12

_3EM/€  355+419

VA= TR/ T 70 t1

Assume yg = 1.0 (column essentially fixed at base)
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A, = 0.8 x (0.28-0) = 0.22in.

Vys = 0.8 X 302.6 = 240.1 kips

£, = (15 x 12) - {20/2) = 1701in.

_ ZPA,

_ 21,906 x 0.22

Q=
Vit c

240.1 x 170

= 0.12
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Example 11.2 (cont’d) Calculations and Discussion Reference
From the alignment chart (Fig. R10.12.1(b)), k= 1.9.
ke, 19 x 1333 x 12
= =46 >
. 03 % 12 10.13.2
Thus, slendemness effects must be considered.
Determine total moment M> (including slenderness effects) and the design load
combinations, using the approximate analysis of 10.13.4.2,
The following table summarizes magnified moment computations for column C1 for ail
ioad combinations, followed by detailed calculations for combinations no. 4 and 3 to
iilustrate the procedure.
B : EPu Ao Vus Q M2ns MZs M2
No. _|toad Combination Gdps) | (in) | (kips) (fi-kips)| (f-kips) | (ft-Kips)
1 1.4D 25,053 48.7 48.7
2  |1.2D+1.6L+0.5Lr 24 795 66.4 66.4
3 N.2D+0.5L+1.6Lr 22,903 49.5 49.5
4  {1.2D+1.6Lr+0.8W 21,908 | 0.28] 302.6] 0.12 21.1] 1104 147.0
5 [1.2D+1.6Lr-0.8W 21,908 | 0.28] 302.6( 0.12 211} -1104] -104.8
6 [1.2D+0.5L+0.5Lr+1.6W 22,605 ] 0.28] 484.2| 0.08 250] 2208 264.2
7 |1.2D+0.5L+0.5Lr-1.6W 226051 0.45; 484.2] 012 250] -220.8] -226.8
8 ]0.9D+1.6W 16,106 | 0.45] 484.2( 0.09 15.8] 220.8 2579
9 |0.9D-1.6W 16,106 | 0.45] 484.2] 0.09 15.8{ -220.8] -226.2
My = Mppe + Mo, Eq. (10-16}
M
BsMyps = 1_2(3 2 My Eq. {10-17)
For load combinations no. 4 and 5:
U=12D + 1.6L, + 0.8W
2P, = (1.2 x 17,895) + (1.6 x 270) + 0 = 21,906 kips



Code

Example 11.2 (cont’d) Calculations and Discussion Reference

c.

b !
T 1-Q  1-0.12

= 1.14

« For sidesway from north to south {load combination ne. 4):
6 Mag =1.14 X 110.4 = 125.9 fi-kips
My = Moyys + 8Mzs =21.1 + 125.9 = 147.0 ft-kips
P, =722.0kips

* For sidesway from south to north (load combination no. 5):
Mo =0.8 x 138.0=110.4 ft-kips

Moy, =12 X 17.6 + 1.6 x 0=21.1 ft-kips
8sMas = 1.14 X (-110.4) = -125.9 ft-kips
M, =21.1 - 125.9 = -104.8 fi-kips

P, = 799.3 kips

For comparison purposes, recompute § M ,, using the magnified moment method
outlined in 10.13.4.3

M,
5Mys = 35, 2 Msx Eq. (10-18)
0.75ZP,
The critical load P; is calculated from Eq. (10-10) using k from 10.13.1 and EI
from Eq. (10-11) or (10-12). Since the reinforcement is not known as of yet, use
Eq. (10-12) to determine EI.
For each of the 12 exterior columns along column lines 1 and 4 (i.e., the columns
with one beam framing into them in the direction of analysis), k was determined
in part 3(a) above to be 1.9.
04E.1 04 x 4,415 x 22* 6. 2
El = L = > = 34.5 x 10" in.” —kips :
1+ B, 12(1 + 0) P £q. (10-12)
=2El 7% x 34.5 x 10°
P, = = ' = 3,686 kips Eq. (10-10)

(ke (1.9 x 13.33 x 12)°
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Example 11.2 (cont’d) Calculations and Discussion Reference
For each of the exterior columns A2, A3, F2, and F3, (i.e., the columns with two
beams framing into them in the direction of analysis):
355 + 419
= —— _____ =55
Va 2 % 70
\IIB =10
From the alignment chart, k = 1.75.
2 6
P, = % 34.5 x 10 - = 4,345 kips Eq. (16-10)
(1.75 x 1333 x 12) '
For each of the 8 interior columns:
4
Ia = 0.7 (2142—] = 19,354 in? 10.11.1
For the column below level 2:
Bl _ 3415 x 19354 _ 503 107 in.~kips
£, (15 x 12) - 10
For the column above level 2:
El _ 4415 x 19354 _ o1 10 in.—kips
£, 12 x 12
503 + 593
= — =78
Va 2 x 70
Vp = 1.0
From the alignment chart, k = 1.82.
24?2 6.
El = 04 x 4,415 x Nl = 48.8 x 10° in.-kips
Eq. (10-12)

2 2 6
p = B EIl _ R X 48.8 x 10 = 5,683 kips

(ke (182 x 1333 x 12)°
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Example 11.2 (cont’d) Calculations and Discussion Reference
Therefore,
TP, = 12(3,686) + 4(4,345) + 8(5,683) = 107,076 kips
The following table summarizes magnified moment computations for column CI
using 10.13.4.3 for all load conditions. The table is followed by detailed
calculations for combinations no. 4 and 5 to illustrate the procedure.
. . EPu 65 Mzns Mb Mz
No. |Load Combination (kips) (in.) (fckips) | (f-kips) | (f-kips)
1 1.4D 25053 ] ——— 48.7] — -~ 48.7
2 |1.20 + 1.6L + 1.6L, 24,795 -—— 66.4] ——— 66.4
3 }1.2D + 0.5L + 1.6L, 22,903 —--— 49.5] —-- 49.5
4 1.2D + 1.6L, + 0.8W 21,908 1.38 21.1 110.4| 173.5
5 1.2D + 1.6L, - 0.8W 21,908 1.38 21.1] -110.4] -131.3
6 1.2D + 0.5L + 0.5L,+ 1.6W 22,605 1.39 25.0 220.8] 331.9
7 1.2D + 0.5L + 0.5L,-1.6W 22,605 1.39 25.0] -220.8| -281.89
8 108D + 1.6W 16,106 1.25 15.8] 220.8] 292.0
8 0.9D - 1.6W 16,106 1.25 15.8] -220.8f -260.3
For load combinations No. 4 and 5:
U =12D + 1.6L, £ 0.8W
1 1
8 = 1o 2Py T, 21,908 =138
0.75ZP, 0.75 x 107,076

»  Forsidesway from north to south (load combination no. 4):
-BsMas = 1.38 X 110.4 = 152.4 ft-kips
Mg =21.1 + 152.4 = 173.5 ft-kips
Py = 722.0 kips

+  For sidesway from south to north (load combination no. 5):
Mo = 1.38 X (-110.4) = -152.4 fi-kips
M>=21.1-152.4 =-131.3 ft-kips

P, = 799.3 kips
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Example 11.2 (cont’d) Caiculations and Discussion Reference
A summary of the magrified moments for column CI for all load combinations
is provided in the following table.
- P. 10.13.4.2 10.13.4.3
No. |Load Combination (Kips) 5 A 5 i
(ft-kips) {ft-kips)
1 1.4D 871.4] ——— 48.7] ——— 48.7
2 1.2D + 1.6 + 0.5L, 869.4] ——— 66.4] - ~- 66.4
3 1.2D + 0.5L + 1.6L, 797.6] ——-— 49.5] — —-— 49 5
4 1.2D + 1.6l + 0.8W 722.0 1.14 147.0 1.38 173.5
5 1.2D + 1.6L, - 0.8W 799.3 1.14 -104.8 1.38 -131.3
6 1.2D + 0.5L + 0.5, + 1.6W 710.9 1.14 276.7 1.39 331.9
7 [1.2D + 0.5L + 0.5L, - 1.6W 865.4 1.14 -226.8 1.39 -281.9
8 |0.9D + 1.6W 482.9 1.10 257.9 1.25 292.0
9 0.9D - 1.6W 637.4 1.10 -226.2 1.25 -260.3
d. Determine required reinforcement.
For the 22 X 22 in. column, try 8-No. 8 bars. Determine maximum allowabie
axial compressive force, 0Py max:
OPamas = 0.800[0.85F(A,— Ay ) + f,A Eq. (10-2)
= (0.80 X 0.65)[(0.85 X 6) (222-6.32) + (60 X 6.32)]
= 1,464.0 kips > maximum P, = 871.4 kips O.K.
The following table contains results from a strain compatibility analysis, where
compressive strains are taken as positive (see Parts 6 and 7). Use M, = M3 from
the approximate P— A method in 10.13.4.2.
9.625" l. ® @
11 lo "

2.375"

20
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Example 11.2 (cont’d) Calculations and Discussion Reference

No Pu Mu c Et ¢ ¢Pn q)Mn
) (kips) | (ft-kips) | (in.) (kips) | (ft-kips
1 871.4 48.7] 14.85] -0.00096] 0.65] 871.4] 459.4
2 869.4 66.4] 14.82] -0.00097| 0.65] 869.4] 459.7
3 797.6 49.5] 13.751 -0.00128| 0.65| 797.6{ 468.2
4 722.0] 147.0] 12.75] -0.00162| 0.65] 722.0] 4741
5 799.3] -104.8] 13.78] -0.00127] 0.65] 799.3] 468.0
6 710.9]  276.7] 12.61] -0.00167] 0.65| 710.9] 474.8
7 865.4] -226.8] 14.76] -0.00099] 0.65| 865.4] 460.2
8 482.91 257.9] 7.38] -0.00500] 0.90] 482.9] 557.2
9 637.4] -226.2] 11.68] -0.00204] 0.65] 637.4] 478.8

Therefore, since oMy > M, for all $P, = Py, use a 22 X 22 in. column with 8-No. 8 bars

(pg =

1.3%). The same reinforcement is also adequate for the load combinations from

the magnified moment method of 10.13.4.3.

4. Design of column C2

a.

Determine if slendemess effects muost be considered.

In part 3(c), k was determined to be 1.82 for the interior columns. Therefore,

1.82 x 13.33 x 12 10.13.2

ke, = 404 > 22

r 0.3 x 24

Slenderness effects must be considered.

b.  Determine total moment M, (including slenderness effects) and the design
load combinations, using the approximate analysis of 10.13.4.2.
The following table summarizes magnified moment computation for column
C2 for all load combinations, followed by detailed calculations for
combinations no. 4 and 5 to illustrate the procedure.
. P, Ao Vi Q 85 M., M, M,
No. |Load Combination (kips) (in) | (kips) (fi-kips)] (f-kips) | (F-kips)
1 |1.4D 25,053 - - - - 2.8 - 2.8
2 |1.2D+1.6L+0.5Lr 24,795 - - - - 27.4 - 27.4
3 {1.2D+0.5L+1.6Lr 22,903 - - - - 10.2 - 10.2
4 [1.2D+1.6Lr+0.8W 21,208 0.28] 3026 0.12 ] 1.14] -1.2| 164.0} 185.0
5 |1.2D+1.6Lr-0.8W 21,908 0.28| 3026] 012 1.14] -1.2] -164.0f -187.4
6 |1.2D+0.5L+0.5Lr+1.6W 22,605 0.45| 4842 0.2 | 1141 -5.1] 328.0] 368.9
7  |1.2D+0.5L+0.5Lr-1.6W 22,605 0.45| 484.2 0.12 | 1.14] -5.1] -328.0| -379.1
8 |0.9D+1.6W 16,106 0.45] 484.2] 009 1.10f -09] 328.0] 358.6
9 [0.9D-1.6W 16,106 0.45| 484.21 0.091 110 -0.9] -328.0] -360.4
My = My + My Eq. (10-18)
M,,
8 My = 1_2(3 > My, Eq. (10-17)
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Example 11.2 (cont’d) Calculations and Discussion Reference
For load combinations no. 4 and 5:
U =120 + L6l £ 0.8W
From part 3(b), 8; was determined to be 1.14.
» For sidesway from north to south (load combination no. 4):
M, =0.8 x 205.0=164.0 ft-kips
Mjne =1.2(=1.0) + 1.6 x 0=1.2 ft-kips
Mo = 1.14 X 164 = 187.0 fi-kips
My = Moy + 8, Mz = -1.2 + 187.0 = 185.8 ft-kips
P, =1,332.6 kips
* For sidesway from south to north (load combination no. 5):
8sMzg = 1.14 X (-164) = -187.0 ft-kips
My =-12-187.0=-188.2 ft-kips
Py =1,333.0 kips
c.  For comparison purposes, recompute § M, using the magnified moment method
outlined in 10.13.4.3. Use the values of ZP,, ZP,, and 3, computed in part 3(c).
o ZP, Os Mz M;; M.
No. |Load Combination (kips) () | (fikips) | fekips) | (kips)
1 1.4D 25063 ——-— 28] —-—-— -2.8
2 |1.2D +1.6L + 0.5L, 24,795 | - - - 274 ——--— -27.4
3 |1.2D + 0.5L + 1.6L, 22,903 -~ —— -10.2] ——— -10.2
4 {1.2D + 16L, + 0.8W 21,908 1.38 -1.20 164.0] 225.1
5 |1.2D + 1.6L,- 0.8W 21,908 1.38 -1.2] -164.0) -227.5
& {1.2D + G.5L + 0.5, + 1.8W 22,805 1.39 -5.1] 328.0] 451.4
7 |1.2D +0.5L + 0.5L, - 1.6W 22,605 1.39 -5.1] -328.0f -461.6
8 10.9D + 1.8W 16,1086 1.25 -0.8] 328.0] 409.4
g |0.9D - 1.8W 16,106 1.25 -0.9] -328.0f -411.2

U =12D + 16L, £ 0.8W
85 = 1.38 from part 3(c)

* For sidesway from north to south (load combination no. 4}):
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Example 11.2 {cont’d) Calculations and Discussion Reference
&My = 1.38 X 164.0 = 226.3 ft-kips
My =-1.2 +226.3=225.1 ft-kips
P, =1,332.6 kips
¢  For sidesway from south to north (load combination no. 5):
DMz = 1.38 X (-164.0) = -226.3 ft-kips
Mjy=-1.2-226.3 =-227.5 ft-kips
P,=1,333.0kips
A summary of the magnified moments for column C2 under all load combinations is
provided in the following table.
I P, 10.13.4.2 10.13.4.3
No. |Load Combination (kips) 5 WG 5 ",
(ft-kips) (ft-kips)
1 1.4D 1,522.6 —— 28] —-—-— -2.8
2 (12D +1.6L + 0.5L, 1,5629.0 —— -27.4] —--- -27.4
3 |1.2D + 0.5L + 1.6L, 1,400.1 —— -10.2) ——— -10.2
4 |[1.2D + 1.6L, + 0.8W 1,332.8 1.14 185.8 1.38 225.1
5 1.2D + 1.6L, - 0.8W 1,333.0 1.14 -188.2 1.38 -227.5
6 |[1.2D +0.5L + 0.5L, + 1.6W 1,380.5 1.14 368.8 1.39 451.4
7 1.20 + 0.5L + 0.5, - 1.6W 1,381.5 1.14 -379.0 1.39 -461.6
8 [0.9D + 1.6W 978.4 1.10 358.6 1.25 409.4
g ]0.9D - 1.6W 979.3 1.10 -360.4 1.25 -411.2
d. Determine required reinforcement.
For the 24 X 24 in. column, try 8-No. 8 bars. Determine maximum allowable
axial compressive force, $Ppy max:
0P, s = 0.800[0.855(A, — Ay) + £,A, Eq. (10-2)

= (0.80 X 0.65)[(0.85 X 6) (242 - 6.32) + (60 X 6.32)]

= 1,708 kips > maximum Py = 1,529.0 kips O.K.

The following table contains results from a strain compatibility analysis, where
compressive strains are taken as positive (see Parts 6 and 7). Use M, = M3 from

the approximate P— A method in 10.13.4.2.
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03 x 24 [1,529.0 -
6 x 242
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Code
Exampie 11.2 (cont’d) Calculations and Discussion Reference
21.625" ’i . J -
@ 24"
e o |
| 24" _
] "
No P, M. c € o P | oM,
" | _(kips) | (itkips) | (in) {kips) | (ft-kips)
1 1,522.6 -2.8] 23.30] 0.00022 0.65]1,522.6 438.1
2 1,529.0 -27.4] 23.39} 0.00023 0.65{1,529.0 435.3
3 1,400.1 -10.21 21.49] -0.00002 0.65]1,400.1 489.7
4 1,332.6 185.8] 20.50{ -0.00016 0.65]1,332.6 513.3
5 1,333.01 -188.2( 20.51]| -0.00016 0.65]1,333.0 513.1
<] 1,380.5 368.8] 21.20] -0.00006 0.65]1,380.5| 496.9
7 1,381.5] -378.0] 21.22] -0.00005 0.6511,381.5 496.4
8 978.4 358.6] 15.562) -0.00118 0.65] 978.4] 587.1
9 879.31 -360.4] 15.46] -0.00120 0.65{ 979.3 587.5
Therefore, since M, > M, for all pP, = P, use a 24 X 24 in. column with 8-No. 8 bars
(pg = 1.1%). The same reinforcement is also adequate for the load combinations from the
magnified moment method of 10.13.4.3. Figure 11-16 obtained from pcaColumn!!?
shows the design strength diagram for Column C2.
5. Determine if the maximum moment occurs at the end of the member. 10.13.5
For column C1:
£y B3XZ 0 B g Eq. (10-19)
r 0.3 x 22 8714
\}6 x 227
For column C2:
Ly (B3 x12 5 35 56
T
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Example 11.2 (cont’d)
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Code

Example 11.2 (cont’d) Calculations and Discussion Reference

Therefore, for columns C1 and C2, the maximum moment occurs at one of the ends, and
the total moment M does not have to be further magnified by 8.

6. Check for sidesway instability of the structure. 10.13.6

a.

When using 10.13.4.2 to compute §;Mg, the value of Q evaluated using factored
gravity loads shall not exceed 0.60. Note that for stability checks, all moments of
inertia must be divided by (1 + Bg) 10.11.1 where, for this story

Maximum factored sustained axial load

Ba = Maximum factored axial load
_ 4P 14 x 17,895 1.0
P, 1.4 x 17,895 )
1+ Bd =20

Dividing all of the moments of inertia by (1 + Bg) is equivalent to increasing the
deflections, and consequently Q, by (1 + Bg). Thus, at the second floor level,

Q=2 X 012 = 024 <0.60

Therefore, the structure is stable at this level. In fact, computing the modified Q at
each floor level shows that the entire structure is stable.

When using 10.13.4.3 to compute 8;M;, the value of §; computed using TP, and ZP,
corresponding to the factored dead and live loads shall be positive and shall not exceed
2.5. For the stability check, the values of EI must be divided by (1 + B3). Thus, the
values of P. must be recomputed considering the effects of Bg.

3P, = 107,076 _ 53,532 kips
1 +1
and &, = L = 2.66 > 2.5
s 1_(1.4 x 17,895) + (1.7 x 2,261) ~ ’
0.75 x 53,532

The structure is unstable when the magnified moment method of 10.13.4.3 is used.
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12

Shear

UPDATE FOR THE ‘05 CODE

In the 2005 edition of the code, changes regarding shear are mostly editorial and notation related. Also, 11.5.3
and 17.5.2 have been inserted to clarify the definition of d for prestressed members.

GENERAL CONSIDERATIONS

The relatively abrupt nature of a failure in shear, as compared to a ductile flexural failure, makes it desirable to
design members so that strength in shear is relatively equal to, or greater than, strength in flexure. To ensure that
a ductile flexural failure precedes a shear failure, the code (1) limits the minimum and maximum amount of
longitudinal reinforcement and (2) requires a minimum amount of shear reinforcement in all flexural members
if the factored shear force V, exceeds one-half of the shear strength provided by the concrete, (V) > 0.50V,),
except for certain types of construction (11.5.5.1), (3) specifies a lower strength reduction for shear (¢ = 0.75)
than for tension-controlled section under flexure (¢ = 0.90).

The determination of the amount of shear reinforcement is based on a modified form of the truss analogy. The
truss analogy assumes that shear reinforcement resists the total transverse shear. Considerable research has
indicated that shear strength provided by concrete V,, can be assumed equal to the shear causing inclined crack-
ing; therefore, shear reinforcement need be designed to carry only the excess shear.

Only shear design for nonprestressed members with clear-span-to-overall-depth ratios greater than 4 is considered in
Part 12. Also included is horizontal shear design in composite concrete flexural members, which is covered sepa-
rately in the second half of Part 12. Shear design for deep flexural members, which have clear-span-to-overall-depth
ratios less than 4, is presented in Part 17. Shear design of prestressed members is discussed in Part 25. The alternate
shear design method of Appendix A, Strut-and-Tie Models, is discussed in Part 32.

1141 SHEAR STRENGTH

Design provisions for shear are presented in terms of shear forces (rather than stresses) to be compatible with the
other design conditions for the strength design method, which are expressed in terms of loads, moments, and
forces.

Accordingly, shear is expressed in termns of the factored shear force V,, using the basic shear strength requirement:
Design shear strength = Required shear strength

oVy 2 Vy Eq. (11-1)
The nominal shear strength V, is computed by:

Vp = Ve + Vi Eq. (11-2)



where V. is the nominal shear strength provided by concrete and Vy is the nominal shear strength provided by
shear reinforcement.

Equation (11-2) can be substituted into Eq. (11-1) to obtain:
OV + OV, =2V

The required shear strength at any section is computed using Eqgs. (11-1) and (11-2), where the factored shear
force V) is obtained by applying the load factors specified in 9.2. The strength reduction factor, $= 0.75, is
specified in 9.3.2.3.

11.1.1.1 Web Openings

Often it is necessary (o modify structural components of buildings to accommodate necessary mechanical and
electrical service systems. Passing these services through openings in the webs of floor beams within the floor-
ceiling sandwich eliminates a significant amount of dead space and results in a more economical design. How-
ever, the effect of the openings on the shear strength of the floor beams must be considered, especially when
such openings are located in regions of high shear near supports. In 11.1.1.1, the code requires the designer to
consider the effect of openings on the shear strength of members. Because of the many variables such as
opening shape, size, and location along the span, specific design rules are not stated. However, references are
given for design guidance in R11.1.1.1. Generally, it is desirable to provide additional vertical stirraps adjacent
to both sides of a web opening, except for small isolated openings. The additional shear reinforcement can be
proportioned to carry the total shear force at the section where an opening is located. Example 12.5 illustrates
application of a design method recommended in Ref. 12.1.

11.1.2 Limit on /{7

Concrete shear strength equations presented in Chapter 11 of the Code are a function of \jf_’ , and had been
verified experimentally for members with concrete compressive strength up to 10,000 pst. Due to a lack of test
data for members with f; > 10,000 psi, 11.1.2 limits the value of \[E to 100 psi, except as allowed in 11.1.2.1.

Section 11.1.2 does not prohibit the use of concrete with f{ > 10,000 psi; it merely directs the engineer not to
count on any strength in excess of 10,000 psi when computing V., unless minimum shear reinforcement is
provided in accordance with 11.1.2.1.

It should be noted that prior to the 2002 Code, minimurm area of transverse reinforcemnent was independent of the
concrete strength, However, tests indicated that an increase in the minimum amount of transverse reinforcement
is required for members with high-strength concrete to prevent sudden shear failures when inclined cracking
occurs. Thus, to account for this, minimum transverse reinforcement requirements are a function of JE .

11.1.3 Computation of Maximum Factored Shear Force

Section 11.1.3 describes three conditions that shall be satisfied in order to compute the maximum factored shear
force V, in accordance with 11.1.3.1 for nonprestressed members:

1. Support reaction, in direction of applied shear force, introduces compression into the end regions of the
member.

2. . Loads are applied at or near the top of the member.

3. Noconcentrated load occurs between the face of the support and the location of the critical section, which is

a distance d from the face of the support (11.1.3.1).
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When the conditions of 11.1.3 are satisfied, sections along the length of the member located less than a distance
d from the face of the support are permitted to be designed for the shear force V, computed at a distance d from
the face of the support. See Fig. 12-1 (a), (b), and (c) for examples of support conditions where 11.1.3 would be

applicable.

Conditions where 11.1.3 cannot be applied include: (1) members framing into a supporting member in tension,
see Fig. 12-1(d); (2) members loaded near the bottom, see Fig. 12-1 (e}; and (3) members subjected to an abrupt
change in shear force between the face of the support and a distance d from the face of the support, see Fig. 12-1 (f).
In all of these cases, the critical section for shear must be taken at the face of the support. Additionally, in the case
of Fig. 12-1(d), the shear within the connection must be investigated and special corner reinforcement should be

provided.

One other support condition is noteworthy. For brackets and corbels, the shear at the face of the support V|, must
be considered, as shown in Fig. 12-2. However, these elements are more appropriately designed for shear using
the shear-friction provisions of 11.7. See Part 15 for design of brackets and corbels.

| i L ’_"I BRSSP SIS ST
— vy T IVQJ %! : : v :
d d d K
_(a) o (b) —J—w—w (c) I-_—

—
H

¥y

EERRIRY!
if Vy d

[ .

(d) (e) (f)

Figure 12-1 Typical Support Conditions for Locating Factored Shear Force W

Figure 12-2 Critical Shear Plane for Brackets and Corbels
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11.2 LIGHTWEIGHT CONCRETE

Since the shear strength of lightweight aggregate concrete may be less than that of normal weight concrete with
equal compressive strength, adjustments in the value of Vo, as computed for normal weight concrete, are necessary.

Except for 11.5.5.3, 11.5.7.9, 11.6.3.1, 11.12.3.2, and 11.12.4.8, when average splitting tensile strength fo is
specified, fy /6.7 is substituted for JE in all equations of Chapter 11. However, the value of f¢; / 6.7 cannot be
taken greater than +/f7 . When f is not specified, \[E is reduced using a multiplier of 0.75 for all-lightweight
concrete or 0.85 for sand-lightweight concrete. Linear interpolation between these multipliers is allowed when
partial sand replacement is used. Section 11.7.4.3 specifies the same multipliers for lightweight concrete.

1.3 SHEAR STRENGTH PROVIDED BY CONCRETE FOR NONPRESTRESSED
MEMBERS

When computing the shear strength provided by concrete for members subject to shear and flexure only, design-
ers have the option of using either the simplified equation, V¢ = ZJE byd [Eq. (11-3}], or the more elaborate
expression given by Eg. (11-5). In computing V. from Eq. (11-5), it should be noted that V,; and M, are the
values which occur simultaneously at the section considered. A maximum value of 1.0is prescribed for the ratio
V,d/M, to limit V, near points of inflection where M, is zero or very small.

For members subject to shear and flexure with axial compression, a simplified V. expression is givenin 11.3.1.2,
with an optional more elaborate expression for V available in 11.3.2.2. For members subject to shear, flexure
and significant axial tension, 11.3.1.3 requires that shear reinforcement must be provided to resist the total shear
unless the more detailed analysis of 11.3.2.3 is performed. Note that Ny, represents a tension force in Eq. (11-8)
and is therefore taken to be negative.

No precise definition is given for “‘significant axial tension.” If there is uncertainty about the magnitude of axial
tension, it may be desirable to carry all applied shear by shear reinforcement.

Figure 12-3 shows the variation of shear strength provided by concrete, V, as function of J’g , Vyd/My, and
reinforcement ratio pw.

P, =2%
2.50 : —]
Ve (max)_s! /
Jiva 7/ [
2.40 f— 7
/
/ / / p.=1%
2,30 5 w
y /

Vo / / ,/
\/fzbwd 2.20 /. / /,
/ ,/
210 i //} p, = 0.5%
/1 // -
i s 4”
/i) &l -

200 (JAL AL
-

4
/a’
-

P,
~

g

-— {=3000psi 1.90

~ — f; = 5000 psi 0 025 050 07 100

Vi d/My

Figure 12-3 Variation of Vi /\[fi bud with £, p,,,, and V,d/M, using Eq. (11-5)
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Figure 12-4 shows the approximate range of values of V,, for sections under axial compression, as obtained from
Egs. (11-5) and (11-6). Values correspond to a 6 x12 in. beam section with an effective depth of 10.8 in. The
curves corresponding to the alternate expressions for V., given by Egs. (11-4) and (11-7), as well as thar corre-
sponding to Eq. (11-8) for members subject to axial tension, are also indicated.

+ Based on a 6".x i2" beam with d=10.8"

[ Eq. (11-7) o
*:13\.
So s . |
o) N
O . Ve
f x (8] -
Range of values x / q \\P Sebyd

obtained by . N®) 4
[ Egs. (11-5) & (115]/// W,é\;ﬁ/d} N
% %/ %2

fg=5000,p,,20.005, § N o——_|

| joe=5- |, ~ Ea. (11-9) |

i
|COMPRESSION | [[TENSION
I000 750 500 250 O -250 -500

Ny ,
Ag (psi)
Figure 12-4 Comparison of Design Equations for Shear and Axial Load

Figure 12-5 shows the variation of V, with Nu/Ag and f{ for sections subject to axial compression, based on
Eg. (11-4). For the range of N/A; values shown, V. varies from about 49% to 57% of the value of V. as defined

by Eq. (11-7).
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Figure 12-5 Variation of V. /bwd with f; and N, /Aq using Eq. (11-4)
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115 SHEAR STRENGTH PROVIDED BY SHEAR REINFORCEMENT
11.5.1 Types of Shear Reinforcement

Several types and arrangements of shear reinforcement permitted by 11.5.1.1 and 11.5.1.2 are illustrated in
Fig. 12-6. Spirals, circular ties, or hoops are explicitly recognized as types of shear reinforcement starting with
the 1999 code. Vertical stirrups are the most commen type of shear reinforcement. Inclined stirrups and longi-
tudinal bent bars are rarely used as they require special care during placement in the field.

]
- P z 1
i
F
Stirrups Welded wire reinforcement
. 45° .o \
o = 30°min, — l
o= 45°mi“-——‘%ny such line must K‘B\g
2 cross a stirrup !
Inclined stirrups Longitudinal beni bors
1 | i
i i ! I
NI WA
Combination Spirals

Figure 12-6 Types and Arrangements of Shear Reinforcement
1154 Anchorage Details for Shear Reinforcement

To be fully effective, shear reinforcement must extend as close to full member depth as cover requirements and
proximity of other reinforcement permit (12.13.1), and be anchored at both ends to develop the design yield
strength of the shear reinforcement. The anchorage details prescribed in 12.13 are presumed to satisfy this
development requirement.

11.5.5 Spacing Limits for Shear Reinforcement

Spacing of stirrups and welded wire reinforcement, placed perpendicular to axis of member, must not exceed
one-half the effective depth of the member (d/2), nor 24 in. When the quantity ¢Vs = (Vy, - ¢V,,) exceeds

¢4+[f¢ byd, maximum spacing must be reduced by one-half to (d/4) or 12 in. Note also that the value of (¢Vs)

shall not exceed cb&JE b, d (11.5.7.9). For situations where the required shear strength exceeds this limit, the

member size or the strength of the concrete may be increased to provide additional shear strength provided by
concrete.

11.5.6 Minimum Shear Reinforcement

When the factored shear force V|, exceeds one-half the shear strength provided by concrete (V> §V./2), a
minimum amount of shear reinforcement must be pravided in concrete flexural members, except for slabs and
footings, joists defined by 8.11, and wide, shallow beams (11.5.5.1). When required, the minimum shear rein-
forcement for nonprestressed members is

— bys
Ayin = 0.75 VI ﬁ Eq. (11-13)
v
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but not less than M

for

Minimum shear reinforcement is a function of the concrete compressive strength starting with the 2002 Code,
Equation (11-13) provides a gradual increase in the minimum required Ay min. While maintaining the previous
minimum value of 50 bys / fy,.

Note that spacing of minimum shear reinforcement must not exceed d/2 or 24 in.
11.5.7 Design of Shear Reinforcement

When the factored shear force V), exceeds the shear strength provided by concrete, ¢V,,, shear reinforcement
must be provided to carry the excess shear. The code provides an equation that defines the required shear
strength V; provided by reinforcement in terms of its area A, yield strength fy, and spacing s. [Eq. (11-15)]. The
equation is based on a truss model with the inclination angle of compression diagonals equal to 45 degree.

To assure correct application of the strength reduction factor, ¢, equations for directly computing required shear
reinforcement Ay are developed below. For shear reinforcement placed perpendicular to the member axis, the
following method may be vsed to determine the required area of shear reinforcement A+, spaced at a distance s:

oV, >V, Eq. (11-1)
where Vo= Ve + 'V Eq. (11-2)
A f,d
and Vv, = — X Eq. (11-15)
8

Substituting Vg into Eq. (11-2) and V,, into Eq. (11-1), the following equation is obtained:

oA f,,d
Ve + ..._..l:;L = Vu
Solving for A,
A = (Vy - Vo) s
y = -
¥Eyd

Similarly, when inclined stirrups are used as shear reinforcement,

{(Vy - dVo) s
q)fyt (sinot + coso) d

v

where « is the angle between the inclined stirrup and longitudinal axis of member (see Fig. 12-8).

When shear reinforcement consists of a single bar or group of parallel bars, all bent-up at the same distance from
the support,

= (Vu - ¢’Vc)

A
Yo, sina
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where o is the angle between the bent-up portion and longitudinal axis of member, but not less than 30 degree

(see Fig. 12-6). For this case, the quantity (V, - ¢V,.) must not exceed $3.Jf b, d.
Design Procedure for Shear Reinforcement

Design of a nonprestressed concrete beam for shear involves the following steps:

. Determine maximum factored shear force V), at critical sections of the member per 11.1.3 (see Fig. 12-1).

2. Determine shear strength provided by the concrete $V, per Eq. (11-3): 0V = $2+/f{byd
where ¢ = 0.75 (9.3.2.3).

3. Compute Vy, - 0V, at the critical section. If V;; - ¢V, > 8 \/E bwd, increase the size of the section or the
concrete compressive strength,

4. Compute the distance from the support beyond which minimum shear reinforcement is required (i.e., where
(Vy = ¢'V.), and the distance from the support beyond which the concrete can carry the total shear force (i.e.,
where V; = ¢V /2).

5. Use Tabie 12-1 to determine the required area of vertical stirrups A, or stirrup space s at a few controlling
sections along the length of the member, which includes the critical sections.

Where stirrups are required, it is usually more expedient to select a bar size and type (e.g., No. 3 U-stirrups
(2 legs)) and determine the required spacing. Larger stirrup sizes at wider spacings are usually more cost
effective than smaller stirrup sizes at closer spacings because the latter requires disproportionately high
costs for fabrication and placement. Changing the stirrup spacing as few times as possible over the required
length also results in cost savings. If possible, no more than three different stirrup spacings should be speci-
fied, with the first stirrup located 2 in. from the face of the support.

Table 12-1 Provisions for Shear Design

V< oVe 12 PVe/2 < VU oV Ve <WVu
Required area of stirrups, Ay none | 0.754ff; Dws  50bws {(Mu - ¢Vc)s
fn £yt Bfn
. Avin o Al 0 Ay
Required | — | 0.754ffibw 500w Vo 0V

d/2 <24 in. for

Stirup spacing, s
{(Vu - 0Ve) < 944/ fcbud

Maximum — d/2<24in.
d/2 <12 in. for

o4 £ bwd < (Mi—9Ve) < 984/ ¢ bud
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The shear strength requirements are illustrated in Fig. 12-7.

r»—- Face of Support
d
\ Shear carried
T ’ by stirrups ¢Vg
(Vi - oVe)
Vu l’ Shear carried
T by concrete $V;
PV
f
PVe/2
y
Min. shear _ Shear \\
Shear reinforcement required ~ reinforcement N rJemforcement ~
ey S
not req'd

Figure 12-7 Shear Sirength Requirements

The expression for shear strength provided by shear reinforcement ¢V, can be assigned specific force values for
a given stirrup size and strength of reinforcement. The selection and spacing of stirrups can be simplified if the
spacing is expressed as a function of the effective depth d instead of numerical values. Practical limits of stirrup
spacing generally vary from s = d/2 to s = d/4, since spacing closer than d/4 is not economical. With one
intermediate spacing at d/3, a specific value of ¢V, can be derived for each stirrup size and spacing as follows:

For vertical stirrups:

A f,d
oVs = ?-%L Eq. (11-7)

Substituting d/n for s, where n =2, 3, and 4
Vs = QA fym
Thus, for No. 3 U-stirrups @ s = df2, fyt =60ksi and ¢ = 0.75
oV, = 0.75(2 x 0.11)60 x 2 = 19.8 kips, say 19 kips

Values of ¢V, given in Table 12-2 may be used to select shear reinforcement. Note that the ¢V, values are
independent of member size and concrete strength. Selection and spacing of stirrups using the design values for
OV = (V- dV.) can be easily solved by numerical calculation or graphically. See Example 12.1.
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Table 12-2 Shear Strength ¢V for Given Bar Sizes and Spacings

Shear Strength ¢V (kips)
Spacing No. 3 U-Stirrups™ No. 4 U-Sfirrups* No. 5 U-Stirrups™
Grade 40 Grade 60 Grade 40 Grade 60 Grade 40 Grade 60
d/2 13 19 24 36 37 55
d/3 19 29 36 54 55 83
d/d 26 39 48 72 74 111

* Stirrups with 2 legs (double values for 4 legs, elc.)

CHAPTER 17 — COMPOSITE CONCRETE FLEXURAL MEMBERS

17.4 VERTICAL SHEAR STRENGTH

Section 17.4.1 of the Code permits the use of the entire composite flexural member to resist the design vertical
shear as if the member were monolithically cast. Therefore, the requirements of Code Chapter 11 apply.

Section 17.4.3 permits the use of vertical shear reinforcement to serve as ties for horizontal shear reinforcement,
provided that the vertical shear reinforcement is extended and anchored in accordance with applicable provi-
sions.

17.5 HORIZONTAL SHEAR STRENGTH

In composite flexural members, horizontal shear forces are caused by the moment gradient resulting from verti-
cal shear force. These horizontal shear forces act over the interface of interconnected elements that form the

composite member.

Section 17.5.1 requires full transfer of the horizontal shear forces by friction at the contact surface, properly
anchored ties, or both. Unless calculated in accordance with 17.5.4, the factored applied horizontal shear force
V, £ ¢V, where ¢V, is the horizontal shear strength (17.5.3).

The horizontal shear strength is $Von = 80b, d for intentionally roughened contact surfaces without the use of
ties (friction only), and for surfaces that are not intentionally roughened with the use of minimum ties provided
in accordance with 17.6 (17.5.3.1 and 17.5.3.2). When ties per 17.6 are provided, and the contact surface is
intentionally roughened to a full amplitude of approximately 1/4 in., the horizontal shear strength is:

V., = (260 + 0.6p, £, ) Ab,d < 500b,d (17.53.3).

The expression for Yoy in 17.5.3.3 accounts for the effect of the quantity of reinforcement crossing the interface
by including p,, which is the ratic of tie reinforcement area to area of contact surface, or p, = A,/b,s. It also
incorporates the correction factor A to account for lightweight aggregate concrete per 11.7.4.3. It should also be
noted that for concrete compressive strength £ < 4444 psi, the minimum tie reinforcement per Eq. (11-13) 1s
pv fyr= 50 psi; substituting this into the above expression, Vo = 290Ab, d. The upper limit of 500 b, d corresponds
to Py fyr = 400 pst in the case of normal weight concrete (e, A = 1),
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When in computing the horizontal shear strength of a composite flexural member, the following apply:

[. When V, > &(500b,d), the shear friction method of 11.7.4 must be used (17.5.2.4). Refer to Part 14 for
further details on the application of 11.7.4.

2. No distinction shall be made between shored or unshored members (17.2.4). Tests have indicated that the
strength of a composite member is the same whether or not the first element cast is shored or not.

3. Composite members must meet the appropriate requirements for deflection control per 9.5.6.

4. The contact surface shall be clean and free of laitance. Intentionally roughened surface may be achieved by
scoring the surface with a stiff bristled broom. Heavy raking or grooving of the surface may be sufficient to
achieve “full Y4 in. amplitude.”

5. The effective depth d is defined as the distance from the extreme compression fiber for the entire composite
section to the centroid of the tension reinforcement. For prestressed member, the effective depth shall not be
taken less than 0.80 h (17.5.2).

The code also presents an alternative method for horizontal shear design in 17.5.4. The horizontal shear force
that must be transferred across the interface between parts of a composite member is taken to be the change in
internal compressive or tensile force, parallel to the interface, in any segment of a member. When this method is
used, the limits of 17.5.3.1 through 17.5.3.4 apply, with the contact area A substituted for the quantity byd in the
expressions. Section 17.5.4.1 also requires that the reinforcement be distributed to approximately reflect the
variation in shear force along the member. This requirement emphasizes the difference between the design of
composite members on concrete and on steel. Slip between the steel beam and composite concrete slab at
maximum strength is large, which permits redistribution of the shear force aleng the member. In concrete
members with a composite slab, the slip at maximum strength is small and redistribution of shear resistance
along the member is limited. Therefore, distribution of horizontal shear reinforcement must be based on the
computed distribution of factored horizontal shear in concrete composite flexural members.

17.6 TIES FOR HORIZONTAL SHEAR

According to 17.6.3, ties are required to be “fully anchored” into interconnected elements “in accordance with
12.13.” Figure 12-8 shows some tie details that have been used successfully in testing and design practice.
Figure 12-8(a) shows an extended stirrup detail used in tests of Ref. 12.3. Use of an embedded “hairpin” tie, as
illustrated in Fig. 12-8(b), is common practice in the precast, prestressed concrete industry. Many precast prod-
ucts are manufactured in such a way that it is difficult to position tie reinforcement for horizontal shear before
concrete is placed. Accordingly, the ties are embedded in the plastic concrete as permitted by 16.7.1.

Shear reinforcement that extends from previously-cast concrete and is adequately anchored into the composite
portion of a member (Fig. 12-8(c)) may be used as reinforcement (ties) to resist horizontal shear (17.4.3). There-
fore, this reinforcement may be used to satisfy requirements for both vertical and horizontal shear.

Example 12.6 illustrates design for horizontal shear.
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* Extended as close as cover and proximity of other
reinforcement permit. A 3 in. projection into
cast-in-place segment is commen practice.

IStcndord Hook Detoil
} +* +* |
.
2 Qr <+ L" o <%‘ - r'—f + 7 +
Y &
i |
- Embedded in Lap spliced
Plastic Concrete {Section |12.13.5)
{Section 16.7.1 )
o) Extended Simple-U b) Embedded “Hairpin” c) Extended Two- piece
Stirrups Ties U-Stirrups

Figure 12-8 Ties for Horizontal Shear
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Example 12.1—Design for Shear - Members Subject to Shear and Flexure Only

Determine required size and spacing of vertical U-stirtups for a 30-foot span, simply supported bearn.

by = 13 in

d = 201in.

£, = 3000 psi
fyT = 40,000 psi
wy = 4.5 kips/ft

Code
Calculations and Discussion Reference
For the purpose of this example, the live load will be assumed to be present on the full span, so
that design shear at centerline of span is zero. (A design shear greater than zero at midspan is
cbtained by considering partial live loading of the span.} Using design procedure for shear
reinforcement outlined in this part:
1. Determine factored shear forces
@ support: V, = 4.5(15) = 67.5kips
@ distance d from support:
Vy = 67.5-4.5(20/12) = 60 kips 11.1.3.1
2. Determine shear strength provided by concrete
oV, = 02,/ byd Eq. (11-3)
¢ = 0.75 9323
BVe = 0.75 (2) 43000 x13x20/1000 = 21.4 kips
Vp = 60kips> ¢V, = 21.4 kips
Therefore, shear reinforcement is required. 1f.1.1
3. Compute V,, — ¢V, at critical section.
V- Vo= 60— 21.4 = 38.6 kips < 08yfbyd = 85.4kips OK. 11.5.7.9
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Example 12.1 (cont’d) Calculations and Discussion

Code
Reference

4.

Determine distance x.. from support beyond which minimum shear reinforcement is
required {V,; = ¢V.):

%o = V, @ support — 9V, _ 67.5 - 21.4
Wy 4.5

= 102 ft

Determine distance Xy, from support beyond which concrete can carry total shear force
Vo=V /2

_V, @support — (§V./2) _ 67.5 - 214/2) _ 5 cq
W, 4.5

Xm

Use Table 12-1 to determine required spacing of vertical U-stirrups.

At critical section, V,, = 60 kips > ¢V, = 21.4 kips
dAfyd
s{req’d) =
(redd) = v Sove
Assuming No. 4 U-stirrups (A, = 0.40in.%),
0.75x0.40x40x20
38.6 B

6.2 in.

s (req’d) =

Check maximum permissible spacing of stirrups:

s (max) < d/2 =20/2 = 10 in. (govemns)

<24 in. since Vy— ¢V, =38.6kips < ¢4ngwd =427 kips
Maximum stirrup spacing based on minimum shear reinforcement:

Ay 0.4x40,000
0.75yfiby  0.754/3,000(13)

B Avfy 0.4x40,000
= 50by, 50%13

s (max) £ =30in.

= 24.61n.

Determine distance x from support beyond which 10 in. stirrup spacing may be used:

10 = 0.75%0.4x40x20

V,-214
V,-21.4=24kips or V, =24 +21.4=45.4Kkips
X = M = 4.9 ft

4.5

12-14

Eq. (11-15)

11.6.51

11.5.6.3




Example 12.1 (cont’d) Calculations and Discussion

Code
Reference

Stirrup spacing using No. 4 U-stirrups:
Midspan

AN

No. 4 @ 6" No. 4 @ 10"

Jpoe |

As an alternate procedure, use simplified method presented in Table 12-2 to determine
stirrup size and spacing.

At critical section,
OV =V, — oV, =60~ 21.4 =38.6 kips
From Table 12-2 for Grade 40 stirrups:
No. 4 U-stirrups @ d/4 provides ¢V = 48 kips
No. 4 U-stirrups @ d/3 provides ¢V, = 36 kips
By interpolation, No. 4 U-stirrups @ d/3.22 = 38.6 kips
Stirrup spacing = d/3.22 = 20/3.22 = 6.2 in.

Stirrup spacing along length of beam is determined as shown previously.

. Xm = 126I
- X =102 - Exterd reinforcement
w, = 4.5 kit to a point where
- = Vy<oVe2
| A —— |
BOk—
Vu = 675k
V=21 4K ¢
(; R 2
y
A d S~
Vo2 = 107K —1 le—m ~

el 15' [
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Example 12.2—Design for Shear - with Axial Tension

Determine required spacing of vertical U-stirnups for a beam subject to axial tension.

f{ = 3600 psi (sand-lightweight concrete, f, not specified)
fyr = 40,000 psi

My = 43.5 ft-kips

M, = 32.0 ft-kips

Vg = 12.8 kips

Vy, = 9.0 kips

Ny = -2.0 kips (tension)

N; = -15.2 kips (tension)

Code
Calculations and Discussion Reterence
1. Determine factored loads 921
My, = 1L2(43.5) + 1.6 (32.0) = 103.4 fi-kips Eg. (9-2)
Vi = 1.2(12.8)+ 1.6 (9.0) = 29.8 kips
N, = 1.2 (-2.0)+ 1.6 (-15.2) = -26.7 kips (tension)
2. Determine shear strength provided by concrete
Since average splitting tensile strength f is not specified, JIECT is reduced by a 11.2.1.2
factor of 0.85 (sand-lightweight concrete)
PV, = §2 1+——N“— 0.85/f. b,d Eq. (11-8)
c 500A, | Ve ‘
o =075 9.3.2.3
oVe = (0.75)2[1 + —£26.700) 169543600 (10.5) 16/1000 = 9.2 kips
500 (18x10.5)
3. Check adequacy of cross-section.
(V, - ¢V,) < 08 (0.85)yf b,d 11.5.7.9

Note: 0.85 is a factor for lightweight concrete per 11.2.1.2
(V, - oV,) = 298 - 9.2 = 20.6 kips

$8(0.85)yfibyd = 0.75x8x0.85v3600 x10.5x16/1000 = 51.4 kips > 20.6kips OK.

12-16




Example 12.2 (cont’d}) Calculations and Discussion

Code
Reference

4. Determine required spacing of U-stirrups

Assuming No. 3 U-stirrups (A, =0.22in.2),
OA yfyed

,d —
PO = N oV

0.75x0.22x40x16 .
o = 5.14in.

20.6

5. Determine maximum permissible spacing of stirrups

Vu—9V. = 20.6 kips
¢o4(0.85)\/§bwd = 25.7kips > 20.6 kips
Therefore, provisions of 11.5.5.1 apply.

$ (max) of vertical stirrups < d/2 = 8in. (govems)
or £ 24in,
$ (max) of No. 3 U-stirrups corresponding to minimum reinforcement area requirements:

Avfy _ 0.22x 40,000
0.75(0.85)\/f2by,  0.75%0.85x~/3600 x10.5

s (max) = = 21.9in.

S (max) = éﬁfy—t = w = 16.8in.

50by, 50 (10.5)
s (max) = 8in. (governs)

Summary:

Use No. 3 vertical stirrups @ 5.0 in. spacing.

i ‘ 12-17
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Example 12.3—Design for Shear - with Axial Compression

A tied compression member has been designed for the given load conditions. However, the original design did
not take into account the fact that under areversal in the direction of lateral load (wind), the axial load, due to the
combined effects of gravity and lateral loads, becomes Py, = 10 kips, with essentially no change in the values of

M; and V. Check shear reinforcement requirements for the column under (1) original design ioads and (2)
reduced axial load.
P - 16" -
My
M, = 86 ft-kips v, (_1\,
P, = 160kips T ¢
Vy = 20 kips v 12 L —No. 3tie @ 6.75"0.c.
u
£ = 4000 psi —_—
fyt = 40,000 pSl V. — |— A5t=8-No. 6
iz -
My
Py ?1.5
Code
Calculations and Discussion Reference
Condition 1: P, = N, = 160 kips
1. Determine shear strength provided by concrete
d = 16-[1.5+0.375 + (0.750/2)] = 13.751in.
OV, = 2|1 + N, f. b,d Eq. (11-4)
‘- 2000A, [ V¢ 7Y 7
o=075 9.3.23
oV, = 0.75(2) [1 + M_Jﬂooo (12)(13.75)/1000 = 22.2 kips
2000 (16x12)
PV = 222 kips > V, = 20 kips
2. Since Vy =20 kips > ¢V./2 = 11.1 kips, minimum shear reinforcement requirements must be
11.5.6.1

satisfied.

No. 3 stirrups (A, = 0.22in.2)
AT
iy 0 _022(40,000) _ o5y Eq. (11-13)

s (max) = =
0.754/tLby, 0.75+/4000 (12)
AL
s(max) = vt 022000000 _ 55,
50b,, 50 (12)
s (max) =d/2=13.75/2=69in. (govemns) 11.5.5.1

Therefore, use of s =675 in. is satisfactory.
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Example 12.3 (cont’d) Calculations and Discussion

Code
Reference

Condition 2: Py, = N, = [0kips

1.

Determine shear strength provided by concrete.

OV, = 0.75 (2)[1 : M_J x 4000 (12)(13.75)/1000 = 16.1 kips
2000 (16x12)

oV, = 16.1 kips < V, = 20kips
Shear reinforcement must be provided to carry excess shear.

Determine maximum permissible spacing of No. 3 ties

s (max) = g = 13—2751 = 69in

Maximum spacing, d/2, governs for Conditions 1 and 2.

Check total shear strength with No. 3 @ 6.73 in.

_ d _ 0.75(0.22) (40) (13.75) .
0Vs = 0A My, 3 = 75 = 13.4kips

OVe + ¢Vs = 16.1 + 134 = 295kips > V, = 20kips OK.

12-19
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Example 12.4—Design for Shear - Concrete Floor Joist

Check shear requirements in the uniformly loaded floor joist shown below.

f. = 4000 psi
fye = 40,000 psi
wgq = 77 psf

Wy = 120 psf

Assumed longitudinal reinforcement:

Bottom bars: 2 -No. 5
Top bars: No.5 @ 9in.

s 20. .
A -
No.5 @ 9"
2-No.5— |- )T
A‘J . .
Joist Elevation
" 6.67" 41"
0 No. 5@ 9 . ]
A . . - - (m) -
Y
13.4"
13.4" 1"
No. 5 I'J12
.Y e ¥ ¥

Section

Calculations and Discussion

Code
Reference

1. Determine factored load.

wy = [1.2(77) + 1.6 (120)] 35/12 = 830 Ib/ft

12-20
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Code
Example 12.4 {(cont’d) Calculations and Discussion Reference
2. Determine factored shear force.
@ distance d from support: 11.1.3.1
Vy = 0.83(10)-0.83 (13.4/12) = 7.4 kips 8.3.3
3. Determine shear strength provided by concrete.
According to 8.11.8, V. may be increased by 10 percent.
Average width of joist web by, = (6.67 + 5) /2 =5.83 in.
OV, = L1921, byd 8.11.8
Eq. (11-3)
o =075 9.323
¢V, = 1.1(0.75) 2+/4000 (5.83) (13.4) /1000 = 8.2 kips
¢V, = 82kips > V, = 74kips OK.
Note that minimum shear reinforcement is not required for joist construction defined by 8.11. 11.5.6.1(b)
Alternatively, calculate V. using Eq. (11-5)
Compute py, and V,d/M,, at distance d from support:
A, (2 x 0.31)
= = 0.0079
Po = bvod ~ (583 (134)
2 2
M, @ face of support = w‘i“ = 0‘831(120) = 30.2 ft-kips 8.3.3
2
M, @d = w, £2 + w,d* w /. d
11 2 2
2
=302 + (0.83)(13.4/12)° (0.83)(20;(13.4112) ~ 215 ft-Kkips
Vid _ 74034712 _ h35 10 oK 11.32.1
M, 21.5
oV, = ¢ 1L1]1.9/f + 2500p Vyd b d < o(1.1)3.5 ff b, d
. = 0 LI[LogT w3 [bud £ 00D 35,
= 0.75(1.1)[1.9\/4,000 + 2500(0.0079)(0.38)](5.83)(13.4)/1,000
= 82 kips < 0.75(1.1)(3.5)4/4,000(5.83)(13.4) /1,000 = 14.3kips O.K.
¢V, = 82kips > V, = 74kips OK.
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Example 12.5—Design for Shear - Shear Strength at Web Openings

The simply supported prestressed double tee beam shown below has been designed without web openings to
carry a factored load wy, = 1520 lb/ft. Two 10-in.-deep by 36-in.-long web openings are required for passage of
mechanical and electrical services. Investigate the shear strength of the beam at web opening A.

This design example is based on an experimental and analytical investigation reported in Ref. 12.1.

32
Beam f/ = 6000 psi ;‘136 |1—13& - a
"

Topping f; = 3000 psi Hole A Hale B

. I
fou = 270,000 psi a
pu ’ Caw -
fye = 60,000 psi -—a—'i;L ‘ A IV

36'-g"
- -

fo

#"‘,

Elevation

I e e e I
b | Ces e
welded Wire Fabric

(dxd - W4 xwi.a 0
~

[“*— Symmetrical
About Center
Line

2—%"0'1!:. 270K Strands

Welded Wire Fabric
(4xd -10/10)

Section A-A
{one-half of the double tee section)

Code
Calculations and Discussion Reference

This example treats only the shear strength considerations for the web opening. Other strength
considerations need to be investigated, such as: to avoid slip of the prestressing strand, openings
must be located outside the required strand development length, and strength of the struts to resist
flexure and axial loads must be checked. The reader is referred to the complete design example in
Ref. 12.1 for such calculations. The design example in Ref. 12.1 also iltustrates procedures for
checking service load stresses and deflections around the openings.

1. Determine factored moment and shear at center of opening A. Since double tee is
symmetric about centerline, consider one-half of double tee section.

w, = % = 760 1b/ft per tee

My = 0.760 (36/2) (8.5) - 0.760 (8.5)%/2 = 88.8 ft-kips

Vu = 0.760 (36/2) - 0.760 (8.5) = 7.2 kips
12-22
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Example 12.5 (cont’d) Calculations and Discussion

Code
Reference

2.

Determine required shear reinforcement adjacent to opening. Vertical stirrups must be pro-
vided adjacent to both sides of web opening. The stirrups should be proportioned to carry
the total shear force at the opening.

v, 7200

= = = 0.16in?
V7 Bh, | 075 x 60,000 "

A

Use No. 3 U-stirrup, one on each side of opening (A, = 0.22 in.2)

Using a simplified analytical procedure developed in Ref. 12.1, the axial and shear forces
acting on the “struts” above and below opening A are calculated. Results are shown in the
figure below. The reader is referred to the complete design example in Ref. 12.3 for the
actual force calculations. Axial forces should be accounted for in the shear design of the
struts.

/COmpressiue strut

l_— L4

4" ] | l —-— =50k

10" Ve =5.4K

12" Stirrup —T:108k

,% (T vy =60k

Investigate shear strength for tensile strut,

ensile strut

Vy = 6.0 kips
Ny = -10.8 kips
d = 0.8h = 0.8(12) = 9.61in.

by = average width of tensile strut = [3.75 +(3.75 + 2 x 12/22))/2 = 4.3 in.

N
Ve = 2|1+ —2—[.fi{ byd
¢ ( SOOAg] c

~ 2(1 10,800
B 500 x 4.3 x 12

) ~6000 (4.3) (9.6)/1000 = 3.72 kips
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Code
Example 12.5 (cont’d) Calculations and Discussion Reference

¢V, = 0.75 (3.72) = 2.8 kips
Vy = 6.0kips > ¢V, = 2.8 kips

Therefore, shear reinforcement is required in tensile strut.

A, = Nu-0Vo)s
ofyd
- _60-289 _ (42
0.75 x 60 x 9.6
wheres = 0.75h = 0.75 x 12 = 9in, 11.5.5.1

Use No. 3 single leg stirrups at 9-in. centers in tensile strut, (Ay = 0.11 in.2). Anchor
stirrups around prestressing strands with 180 degree bend at each end.

5. Investigate shear strength for compressive strut.
Vy = 5.4kips
Ny = 60kips
d = 08h = 08(4) = 3.2in.

by = 48 in.

N
= 2|1+ —3 | 7 b.d Eq. (11-4)
[ 2000Ag]

( 60,000
21+ —2
2000 x 48 x 4

) +/3000 (48) (3.2)/1000 = 19.5 kips
dVe = 0.75(19.5) = 14.6 kips

Vy = 5.4kips < ¢V, = 14.6 kips

Therefore, shear reinforcement is not required in compressive strut.

6. Design Summary - See reinforcement details below.

a. Use U-shaped No. 3 stirrup adjacent to both edges of opening to contain cracking
within the struts.
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Example 12.5 (cont’d) Calculations and Discussion Reference

b. Use single-leg No. 3 stirrups at 9-in. centers as additional reinforcement in the tensile
strut.

&

= T

| |
A ol Lo

S No. 3 Single Leg Stirrup

No. 3 U-Stirrup

N

U-Shaped Stirrup Single Leg Stirrup
Details of Additional Reinforcement

A similar design procedure is required for opening B,
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Example 12.6—Design for Horizontal Shear

For the composite siab and precast beam construction shown, design for transfer of horizontal shear at contact surface
of beamn and slab for the three cases given below. Assume the beam is simply supported with a span of 30 feet,

by =36" Cast-in-place Slab

T | - - i‘ -+ &f

19"

Precase Beam —

£, = 3000 psi (normal weight concrete)
fye = 60,000 psi

Code
Calculations and Discussion Reference
Case I: Service dead load = 315 Ib/ft
Service live load = 235 Ib/ft
Factored load = 1.2(315) + 1.6 (235) = 754 Ib/ft Eq. (9-2}
1. Determine factored shear force V,, at a distance d from face of support:.
Vo = (0.754 x 30/2) - (0.754 x 19/12) = 10.1 kips 11.1.3.1
2. Determine horizontal shear strength. 17.5.3
Vy € Vg Eq. (17-1)
®Van = ¢ (B0byd) 17.5.31&17.5.3.2

= 0.75 (80 x 10 x 19)/1000 = 11.4 kips

Yy, = 10.1kips £ ¢V, = 11.4kips
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Code
Example 12.6 (cont’d) Calculations and Discussion Reference
Therefore, design in accordance with either 17.5.3.1 or 17.5.3.2:
Note: For either condition, top surface of precast beam must be cleaned and free of
laitance prior to placing slab concrete.
If top surface of precast beam is intentionally roughened, no ties are required. 17.5.3.1
If top surface of precast beam is not intentionally roughened, minimum ties are required 17.6.3.2
in accordance with 17.6.
Determine required minimum area of ties. 17.86
0.754f:b,d 50b,,s
y = e 11.55.3
yt yt
where s (max) = 4(3.5) = 14in. < 24in. 17.6.1
754 14
A, = 2TV3000Q0AD _ 006502 4t 144, o,
60,000
Min. A, = 20 x10 x 14 = 0.117 in? at 14in. o.c.
60,000
or 0.10 in.2/ft
Case II: Service dead load = 315 Ib/ft
Service live load = 1000 Ib/ft
Factored load = 1.2(315) + 1.6 (1000) = 1978 Ib/ft 9.2
Determine factored shear force V), at a distance d from face of support.
Vy = (1.98 x 30/2) — (1.98 x 19/12) = 26.6 kips 11.1.3.1
Determine horizontal shear strength. 17.5.3
Vy = 26.6kips > ¢V, = 0{80b,d) = 11.4kips
Therefore, 17.5.2.3 must be satisfied. Minimum ties are required as computed above
(Ay =0.10 in.2/ft).
Vi = ¢ (260 + 0.6pfy,) Ab,d 17.5.3.3



Code

Example 12.6 (cont’d) Calculations and Discussion Reference

where p, = % = %ﬁn—)
= 0.00083
A = 1.0 (normal weight concrete) 11.7.4.3
OV = 0.75 (260 + 0.6 x 0.00083 x 60,000) (1.0 x 10 x 19)
= 0.75(290) 190 = 41.3 kips

OVun = 413 kips < ¢ (500byd)/1000 = 71.3kips OK. 17.5.3.3
V, = 26.6kips < $V,, = 41.3 kips
Therefore, design in accordance with 17.5.2.3;
Contact surface must be intentionally roughened to “a full amplitude of approximately 1/4-
in.,” and minimum ties provided in accordance with 17.6.

3. Compare tie requirements with required vertical shear reinforcement at distance d from
face of support.
Vy = 26.6 kips
Ve = 24/f byd = 2+/3000 x 10 x 19/1000 = 20.8 kips Eq. (11-3)
Vo £ 0 (Ve + V) = oV + ¢Avfyt§ Eq. (11-15)
Solving for A/s:
Ay _ Vy - 9V, - 26.6 - (0.75 x 20.8) _ 0.013 in.2/in.

] ofy,d 0.75 x 60 x 19

19 11.5.5.1

Smax = > = 9.5in. < 24in.

Ay = 0.013 x9.5 = 0.12in.2

Provide No. 3 U-stirrups @ 9.5 in. o.c. (A, =0.28 in.%/ft). This exceeds the minimum ties
required for horizontal shear (A, = 0.10 in.2/ft) so the No. 3 U-stirrups @ 9.5 in. o.c. are
adequate to satisfy both vertical and horizontal shear reinforcement requirements. Ties
must be adequately anchored into the slab by embedment or hooks. See Fig. 12-8.
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Example 12.6 (cont’d) Calculations and Discussion Reference

Case III:  Service dead load = 315 Ib/ft
Service live load = 3370 Ib/ft
Factored load = 1.2(315) + 1.6 (3370) = 5770 1b/ft 9.2

1. Determine factored shear force V,, at distance d from support.

Vu = (3.77 x 30/2) - (5.77 x 19/12) = 77.4 kips 11.1.3.1

V, = 77.4kips > ¢ (500byd) = 0.75(500 x 10 x 19)/1000 = 71.3 kips 17.5.3.4

Since Vy exceeds ¢ (500b,d), design for horizontal shear must be in accordance with 11.7.4 -
Shear-Friction. Shear along the contact surface between beam and slab is resisted by shear-
friction reinforcement across and perpendicular to the contact surface.

As required by 17.5.3.1, a varied tie spacing must be used, based on the actual shape of the
horizontal shear distribution. The following method seems reasonable and has been used in the

past:

Converting the factored shear force to a unit stress, the factored horizontal shear stress at a
distance d from span end is:

v, 77.4 .
Vg, = —% = = 0407 ks
W= pd T 1019 '

The shear “stress block” diagram may be shown as follows:

V,n = 407 psi ¢ span
t—
407 psi = ’
v, = 407 psi I j’..i_ | [
— | A
«—> J 40’
State of stress at 1o

span end (point A)

Assume that the horizontal shear is uniform per foot of length, then the shear transfer force for
the first foot is:

Vun = 0407 X 10 x 12 = 48.9 kips
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Example 12.6 (cont’d) Calculations and Discussion Reference
Required area of shear-friction reinforcement is computed by Eqgs. (11-1) and (11-25):
Von S ¢V, = ¢)Avffyt“' Eq. (11-25)
V,
Ay = uh
Gt
If top surface of precast beam is intentionally roughened to approximately 1/4in., p = 1.0 11.7.4.3 ;
Ay = 48.9 = 1.09 in.2 /ft
0.75 x 60 x 1.0 ‘
With No. 5 double leg stirrups, Ays = 0.62 in.2 |
_ 062 x 12 = 6.8in.
1.09
Use No. 5 U-stirrups @ 6.5 in. o.c. for a minimum distance of d + 12 in, from span end.
11.7.4.3

If top surface of precast beam is not intentionally roughened, g = 0.6.

48.9 .
A = = 18lin“/ft
P T 075 x 60 % 0.6 -

- 0.62 x 12 - 41in.

1.81

Use No. 5 U-Stirrups @ 4 in. o.¢. for a minimum distance of d + 12 in. from span end.

This method can be used to determine the tie spacing for each successive one-foot length. The
shear force will vary at each one-foot increment and the tie spacing can vary accordingly to a

maximum of 14 in. toward the center of the span.

Note: Final tie details are governed by vertical shear requirements.
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13

Torsion

UPDATE FOR THE ‘05 CODE

In the 2005 code, the provisions of for torsion design remain essentially unchanged. However, a new section
(11.6.7) now permits using alternative procedures for torsion design of solid sections with an aspect ratio, h/b,,
of three or more. Moreover, in addition to standard hooks, 11.6.4.2 allows using seismic hooks to anchor trans-
verse torsional reinforcement.

BACKGROUND

The 1963 code included one sentence concerning torsion detailing. It prescribed use of closed stirrups in edge
and spandrel beams and one longitudinal bar in each corner of those closed stirrups. Comprehensive design
provisions for torsion were first introduced in the 1971 code. With the exception of a change in format in the
1977 document, the requirements have remained essentially unchanged through the 1992 code. These first
generation provisions applied only to reinforced, nonprestressed concrete members. The design procedure for
torsion was analogous to that for shear. Torsional strength consisted of a contribution from concrete (T,) and a
contribution from stirrups and longitudinal reinforcement, based on the skew bending theory.

The design provisions for torsion were completely revised in the 1995 code and remain essentially unchanged
since then. The new procedure, for solid and hollow members, is based on a thin-walled tube, space truss
analogy. This unified approach applies equally to reinforced and prestressed concrete members. Background of
the torsion provisions has been summarized by MacGregor and Ghoneim.!3-! Design aids and design examples
for structural concrete members subject to torsion are presented in Ref. 13.2.

For design purposes, the center portion of a solid beam can conservatively be neglected. This assumption is
supported by test results reported in Ref. 13.1. Therefore, the beam is idealized as a tube. Torsion is resisted
through a constant shear flow q (force per unit length of wall centerline) acting around the centerline of the tube
as shown in Fig. 13-1{2). From equilibrium of external torque T and internal stresses:

T = 2A,q = 2A,1t (1

Rearranging Eq. (1)

T
= Tt = 2
q 2, 2)
where 1 = shear stress, assumed uniform, across wall thickness

t = wall thickness

T = applied torque



A, = area enclosed within the tube centerline [see Fig. 13-1(b)]

(a) Thin-walled tube {b) Area enclosed by shear flow
path, Ag

Figure 13-1 Thin-Walil Tube Analogy

When a concrete beam is subjected to a torsional moment causing principal tension larger than 4@ , diagonal
cracks spiral around the beam. After cracking, the tube is idealized as a space truss as shown in Fig. 13-2. In this
truss, diagonal members are inclined at an angle 0. Inclination of the diagonals in all tube walls is the same.
Note that this angle is not necessarily 45 degree. The resultant of the shear flow in each tube wall induces forces
in the truss members. A basic concept for structural concrete design is that concrete is strong in compression,
while steel is strong in tension. Therefore, in the truss analogy, truss members that are in tension consist of steel
reinforcement or “tension ties.” Truss diagonals and other members that are in compression consist of concrete
“compression struts.” Forces in the truss members can be determined from equilibrium conditions. These
forces are used to proportion and detail the reinforcement.

Longitudinal Bar

Concrete Compression
Diagonals

Figure 13-2 Space Truss Analogy

Figure 13-3 depicts a free body extracted from the front vertical wall of the truss of Fig. 13-2. Shear force V2 is
equal to the shear flow g (force per unit length) times the height of the wall y,. Stirrups are designed to yield
when the maximum torque is reached. The number of stirrups intersected is a function of the stirrup spacing s

and the horizontal projection y,cot8 of the inclined surface. From vertical equilibrium:

Af
V, = tSyt Yo coto (3)

As the shear flow (force per unit length) is constant over the height of the wall,

T
Vo = qy, = EYVRL (4)
Q
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Substituting for V5 in Eqgs. (3) and (4},

2A AL
T = 2% oo (5)
s

Ve
v, ¥, = center-io center
9 length of closed
‘,’,f’ stirrup

S By
yscotd

A
Y

Figure 13-3 Free Body Diagram for Vertical Equilibrium

&eray

A free body diagram for horizontal equilibrium is shown in Fig. 13-4, The vertical shear force V; in wall “i” is
equal to the product of the shear flow g times the length of the wall y;. Vector V; can be resolved into two
components: a diagonal component with an inclination 6 equal to the angle of the truss diagonals, and a horizon-
tal component equal to:

Ni = Vi cotd

Force N; is centered at the midheight of the wall since q is constant along the side of the element. Top and
bottom chords of the free body of Fig. 13-4 are subject to a force Ni/2 each. Internally, it is assumed that the
longitudinal steel yields when the maximum torque is reached. Summing the internal and external forces in the
chords of all the space truss walls resuits in:

T
EAgify = Affy = ZN; = XEVjcotb = Zqgyjcotf = X 'QT yijcot@ = cot OZy;
o o
where Ay is the yield force in all longitudinal reinforcement required for torsion.
Rearranging the above equation,
2A.Af
o ilyf (6)

- 2 (x5 +y,) cotd

Ay Ni2

¥, /

E 4 / i
o y Pl
1 Sk

-

N/2

Figure 13-4 Free Body Diagram for Horizontal Equilibrium
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11.6.1 Threshold Torsion

Torsion can be neglected if the factored torque Ty is less than ¢T./4, where T,; is the cracking torque. The
cracking torque corresponds to a principal tensile stress of 4\/3 . Prior to cracking, thickness of the tube wall “t”
and the area enclosed by the wall centerline “A.” are related to the uncracked section geometry based on the

following assumptions:

3A
t = _CB (7)
4pep
2Acp .
A, = 5 (before cracking) (8)
where A, = area enclosed by outside perimeter of concrete cross-section, in.2

pep = outside perimeter of concrete cross-section, in.
A, = area within centerline of the thin-wall tube, in.2

Equations (7) and (8) apply to the uncracked section. FFor spandrel beamns and other members cast monolithically
with a slab, parts of the slab overhangs contribute to torsional resistance. Size of effective portion of slab to be

considered with the beam is illustrated in Fig. R13.2.4.

Substituting for t from Eq. (7), Ay from Eq. (8), and taking 1 = 4@ in Eq. (1), the cracking torque for
nonprestressed members can be derived:

A2
Ty = 4 fé[ °"J ()
Pep

For prestressed concrete members, based on a Mohr’s Circle analysis, the principal tensile stress of 4.JE is

’ f,
reached at |1 + 4:}% times the corresponding torque for nonprestressed members. Therefore, the cracking
<

torque for prestressed concrete members is computed as:

2
A f
Ter = 44f0 | —2 |1+ = (10}
Pep 4t
where fpC = compressive stress in concrete, due to prestress, at centroid of section (also see 2.1)

Similarly, for nonprestressed members subjected to an applied axial force, the principal tensile stress of

‘ N
4t is reached at 1+ 4A :ﬁr times the corresponding torque, so that the cracking torque is:
sVl

Al N
T, = 44 | =2 | 1+—2—
¢ ’/:(pcp] 4A,t; (11)
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where Ny = factored axial force normal to the cross-section (positive for compression)

Ag = gross area of section. For a holiow section, A is the area of the concrete only and does not
include the area of the void(s) (see 11.6.1).

According to 11.6.1, design for torsion can be neglected if T, < ,Le.

] (12)
f
pC

' /1 + N % (13)

For nonprestressed members subjected to an axial tensile or compressive force:

T
4
For nonprestressed members:

Tu<¢>\/g(

2
Acp
Pep

For prestressed members:

T, <¢\/E[

A

2
cp
Pep

T, <O4/f; Ay 14—
’ ¢ Pep 4Ag‘\/€ (14)

It is important to note that Ay s to be used in place of Acp in Egs. (12) through (14) for hollow sections, where for
torsion, a hollow section is defined as having one or more longitudinal voids such that Ag/Acp < 0.95 (see R11.6.1).
The quantity A in this case is the area of the concrete only (i.e., the area of the void(s) are not included), based on the
outer boundaries prescribed in 13.2.4. The threshold torsion provisions of 11.6.1 were modified in the 2002 code to
apply to hollow sections, since results of tests in code Ref. 11.29 indicate that the cracking torque of a hollow section
is approximaiely (Ag/Acp) times the cracking torque of a solid section with the same outside dimensions. Multiply-
ing the cracking torque by (Agz/Acp) a second time reflects the transition from the circular interaction between
the inclined cracking loads in shear and torsion for solid members, to the approximately linear interaction for
thin-walled hollow sections.

11.6.2 Equilibrium and Compatibility - Factored Torsional Moment T,

* Whether a reinforced concrete member is subject to torsion only, or 1o flexure combined with shear, the stiffness
of that member will decrease after cracking. The reduction in torsional stiffness after cracking is much larger
than the reduction in flexural stiffness after cracking. If the torsional moment T, in 4 member cannot be reduced
by redistribution of internal forces in the structure, that member must be designed for the full torsional moment
T, (11.6.2.1). This is referred to as “equilibrium torsion.” See Fig. R11.6.2.1. If redistribution of internal forces
can occur, as in indeterminate structures, the design torque can be reduced. This type of torque is referred to as
“compatibility torsion.” See Fig. R11.6.2.2. Members subject to compatibility torsion need not be designed for
atorque larger than the product of the cracking torque times the strength reduction factor ¢ (0.75 for torsion, see
9.3.2.3). For cases of compatibility torsion where Ty, > ¢T; the member can be designed for $ T, only, provided
redistribution of internal forces is accounted for in the design of the other members of the structure (11.6.2.2).
Cracking torque T is computed by Eq. (%) for nonprestressed members, by Eq. (10) for prestressed members, and
by Eq. (11) for nonprestressed members subjected to an axial tensile or compressive force, For hollow sections,
Acp shall not be replaced with A, in these equations (11.6.2.2).

11.6.2.4-11.6.2.5 Critical Section—In nonprestressed members, the critical section for torsion design is at distance
“d” (effective depth) from the face of support. Sections located at a distance less than d from the face of support must
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be designed for the torque at distance d from the support. Where a cross beam frames into a girder at a distance less
than d from the support, a concentrated torque occurs in the girder within distance d. In such cases, the design torque
must be taken at the face of support. The same rule applies to prestressed members, except that h/2 replaces distance
d, where h is the overall height of member. In composite members, h is the overall height of the composite section.

11.6.3 Torsional Moment Strength
The design torsional strength should be equal to or greater than the required torsional strength:
0T, =2 T, Eq. (11-20)

The nominal torsional moment strength in terms of stirrup yield strength was derived above [see Eq.(3)]:

2A A f
T, = "T‘yt cotB Eq. (11-21)

where Ay = 0.85A (this is an assumption for simplicity, see 11.6.3.6)

Aqn = area enclosed by centerline of the outermost closed transverse torsional reinforcement as
illustrated in Fig, 13-5

© =  angle of compression diagonal, ranges between 30 and 60 degree. Itis suggestedin 11.6.3.6
to use 45 degree for nonprestressed members and 37.5 degree for prestressed members with
prestress force greater than 40 percent of tensile strength of the longitudinal reinforcement.

Note that the definition of A, used in Eq. (8) was for the uncracked section. Also note that nominal torsional
strength T}, is reached after cracking and after the concrete member has undergone considerable twisting rota-
tion. Under these large deformations, part of the concrete cover may have spalled. For this reason, when
computing area A, corresponding to Ty, the concrete cover is ignored. Thus, parameter A, is related to Agy, the
area enclosed by centerline of the outermost closed transverse torsional reinforcement. Area A, can be deter-
mined through rigorous analysis (Ref. 13.3) or simply assumed equal to 0.85Ay, (see 11.6.3.6).

Substituting for T from Eq. (5) into Eq. (6} and replacing 2 (x, + Vo) With py, (perimeter of centerline of outer-
most closed transverse torsional reinforcement), the longitudinal reinforcement required to resist torsion is com-

/ Closed stir up typ.
P4 ( )

AN
BN

Figure 13-5 Definition of Agn
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A [ 2
Ay = [—t]Ph [fLJ cot” 0 Eq. (11-22)

y
Note that term (Ay/s) used in Eq. (11-22) is that due to torsion only, and is computed from Eq. (11-21). In
members subject to torsion combined with shear, flexure or axial force, the amount of Iongitudinal and trans-
verse reinforcement required to resist all actions must be determined using the principle of superposition (see
11.6.3.8and R11.6.3.8). In members subject to flexure, area of longitudinal torsion reinforcement in the flexural
compression zone may be reduced to account for the compression due to flexure (11.6.3.9). In prestressed
members, the longitudinal reinforcement required for torsion may consist of tendens with a tensile strength
Apsfps equivalent to the yield force of mild reinforcement, Afy,, computed by Eq. (11-22).

To reduce unsightly cracking and prevent crushing of the concrete compression struts, 11.6.3.1 prescribes an
upper limit for the maximum stress due to shear and torsion, analogous to that due to shear only. In solid
sections, stresses due to shear act over the full width of the section, while stresses due to torsion are assumed
resisted by a thin-walled tube. See Fig. R11.6.3.1(b). Thus, 11.6.3.1 specifies an elliptical interaction between
stresses due to shear and those due to torsion for solid sections as follows:

2 2
Vu TuPn Ve 7
+ < + 8. f
\[(bwd] [1_7Agh ] d (bwd 8K Eq. (11-18)

For hollow sections, the stresses due to shear and torsion are directly additive on one side wall [see Fig.
R11.6.3.1(a)]. Thus, the following linear interaction is specified:

[V“ J+[ TyPh ) < ¢[bvcd + SJEJ Eq. (11-19)

byd ) | 1.7A2,

In Egs. (11-18) and (11-19), V, is the contribution of concrete to shear strength of nonprestressed (see 11.3) or
prestressed (see 11.4) concrete members. Further, the 2005 code clarifies in 11.5.3 that for prestressed members
d should be taken as the distance from extreme compression fiber to centroid of the prestressed and nonprestressed
longitudinal tension reinforcement, if any, but need not be taken less than 0.8h.

When applying Eq. (11-19) to a hollow section, if the actual wall thickness t is less than Aqn/p, the actual wall
thickness should be used instead of Agh/ph (11.6.3.3).

11.6.4 Details of Torsional Reinforcement

Longitudinal and transverse reinforcement are required to resist torsion. Longitudinal reinforcement may con-
sist of mild reinforcement or prestressing tendons. Transverse reinforcement may consist of stirrups, welded
wire reinforcement, or spiral reinforcement. To control widths of diagonal cracks, the design yield strength of
longitudinal and transverse torsional reinforcement must not exceed 60,000 psi (11.6.3.4).

In the truss analogy illustrated in Fig. 13-2, the diagonal compression strut forces bear against the longitudinal corner
reinforcement. In each wall, the component of the diagonal struts, perpendicular to the longitudinal reinforcement is
transferred from the longitudinal reinforcement to the transverse reinforcement. It has been observed in torsional
tests of beams loaded to destruction that as the maximum torque is reached, the concrete cover spalls. 133 The forces
in the compression struts outside the stirrups, i.e. within the concrete cover, push out the concrete shell. Based on this
observation, 11.6.4.2 specifies that the stirrups should be closed, with 135 degree hooks or seismic hooks as defined
in 21.1, Stirrups with 90 degree hooks become ineffective when the concrete cover spalls. Similarly, lapped
U-shaped stirrups have been found to be inadequate for resisting torsion due to lack of support when the concrete
cover spalls. For hollow sections, the distance from the centerline of the transverse torsional reinforcement to the
inside face of the wall of the hollow section must not be less than 0.5Aqp/ph (11.6.4.4).
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11.6.5 Minimum Torsion Reinforcement

In general, t¢ ensure ductility of nonprestressed and prestressed concrete members, minimum reinforcement is
specified for flexure {10.5) and for shear (11.5.6). Similarly, minimom transverse and longitudinal reinforce-
ment is specified in 11.6.5 whenever Ty > ¢ T/4. Usually, a member sabject to torsion will also be simulta-
neously subjected to shear. The minimum area of stirrups for shear and torsion is computed from:

— bys 50b,,s
(Ay+24A;) = 0.75Jff 2= 2 —¥ Egq. (11-23)
£y £y

which now accounts for higher strength concretes (see 11.6.5.2).

The minimum area of longitudinal reinforcement is computed from:

5] A A £,
Agmin = —fc L. (_t)Ph fL Eq. (11-24)
y § y

but Ay/s (due to torsion only) must not be taken less than 25by/fy:.
11.6.6 Spacing of Torsion Reinforcement

Spacing of stirrups must not exceed the smaller of p/8 and 12 in. For a square beam subject to torsion, this
maximum spacing is analogous to a spacing of about d/2 in a beam subject to shear (11.6.6.1).

The longitudinal reinforcement required for torsion must be distributed around the perimeter of the closed stir-
rups, at a maximum spacing of 12 in. In the truss analogy, the compression struts push against the longitudinal
reinforcement which transfers the transverse forces to the stirrups. Thus, the longitudinal bars should be inside
the stirrups. There should be at least one longitudinal bar or tendon in each corner of the stirrups to help transmit
the forces from the compression struts to the transverse reinforcement. To avoid buckling of the longitudinal
reinforcement due to the transverse component of the compression struts, the longitudinal reinforcement must
have a diameter not less than 1/24 of the stirrup spacing, but not less than 3/8 in. (11.6.6.2).

11.6.7 Alternative Design for Torsion

Section 11.6.7 introduced in the 2005 code allows using alternative torsion design procedures for solid sections
with h/by ratio of three or more. According to 2.1, his defined as overall thickness of height of members, and b,
is width of that part of cross section containing the closed stirrup resisting torsion. This criterion would be easy
to apply to rectangular sections, For other cross sections see discussion below.

An alternative procedure can only be used if its adequacy has been proven by comprehensive tests. Commentary
R11.6.7 suggests an alternative procedure, which has been described in detail by Ziz and Hsu in Ref 13.4. This
procedure is briefly outlined below and its application is also illustrated in Example 13.1.

ZIA-HSU ALTERNATIVE DESIGN PROCEDURE FOR TORSION

Zia-Hsu method for torsion design applies to solid rectangular, box, and flanged sections of prestressed and non-
prestressed members. In this procedure L-, T-, inverted T-, and I-shaped sections are subdivided into rectangles,
provided that these rectangles include closed stirrups and longitudinal reinforcement required for torsion. Equally
important is that the stirrups must overlap adjacent rectangles, This alternative method is most appropriate for precast
spandrel beams with a tall stem and a small ledge at the bottom of the stem. In this case, the h/b, ratio is checked for
the vertical stem.
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The following steps summarize the procedure:

I.

2.

Determine the factored shear force V, and the factored forsional moment Ty,

Calculate the shear and torsional constant

b,d

Cl‘. =
¥ x%y

(15)

where by, is the web width and d is the distance from extreme compression fiber to centroid of longitu-
dinal prestressed and nonprestressed tension reinforcement, if any, but need not be less than 0.80h for
prestressed members. The section has to be divided into rectangular components of dimensions x and y
(X <y ) in such a way that the sum of x2y terms is maximum. For overhanging flanges, however, the
width shall not be taken more than three times the flange thickness {i.e. height).

Check the threshold (minimum) torsional moment

Toin =00.5y£, YE %y (16)

, 10f,
where Y=_[1+ f.pc is a prestressing factor and fp is the average prestressing force in the member
(2

after losses.
If Ty < Tmin, then torsion design is not required. Otherwise proceed to Step 4.

Check the maximum permissible torsional moment

1 ;
ECYJf:Z x%y

2
L[ Y (17)

Tmax

f
where C=12-10-E_ If Ty > Tmax. then the section is not adequate and needs to be redesigned.
<

Options are to use a larger cross section, or increase f,. or fpe.

Calculate nominal torsional moment strength provided by concrete under pure torsion
T, =0.8Jg ¥ x2y(2.5y-1.5) (18)

Calculate the nominal shear strength provided by concrete without torsion V;: =2J:f:bwd for
nonprestressed members and the smaller of V¢ and Ve for prestressed members, where Veoand Ve
are defined by Egs (11-10) and (11-12), respectively.
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10.

11.

Calculate the nominal torsional moment strength provided by concrete under combined loading

Compute transverse reinforcement for torsion

If Ty > ¢T, then the area of transverse torsional reinforcement required over distance s equals

A T

s axp¥ify

where:
Ay = area of one leg of a closed stirrup resisting torsion

1;==%%L"TE

oy =0.66 +0-33[£"], but no more than 1.5

X) = shorter center-to-center dimension of a closed stirrup
y1= longer center-to-center dimension of a closed stirrup

Compute transverse reinforcement for shear

If V> ¢V, then the area of transverse shear reinforcement required over distance s equals

Ay _ Vs
s dfy
where:
Ay = the area of a stirrup (all legs) in section,
Vs = -%‘-‘-— Ve

Calculate the total transverse reinforcement

The total transverse reinforcement required for shear and torsion is equal to

é_"'_.{,.zﬁ

5 b

13-10

(19)

(20)

(21)

(22)




12.

but should not be taken Iess than (ﬁt +2ﬁ) , which is equal to the smaller of
S ] hin

£,
50(1+12EJP~W~ and 2002
fe Jig fyr
Calculate longitudinal torsional reinforcement
The area of longitudinal torsional reinforcement required is equal to the larger of

X1+
Ae=2At(1—SyLJ @3

and

A= W00xs| _Tu | _pu l:x1+y1]
5 |, + Yo s
3C,

However, the value calculated from Eq (24) need not exceed the value obtained when the smaller of

£
500 1+12-E bws and 2()0-t-’-‘!’E is substituted for 2A,.
fo )y fur

(24)

Application of the ACI procedure (11.6) and the Zia-Hsu procedure (Ref. 13.4) is illustrated in Example 13.1
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Example 13.1-—Precast Spandrel Beam Design for Combined Shear and Torsion

Design a precast, nonprestressed concrete spandrel beam for combined shear and torsion. Roof members are
simply supported on spandrel iedge. Spandrel beams are connected to colummns to transfer torsion. Continuity

between spandrel beams is not provided.

Compare torsional reinforcement requirements using ACE 318-05 provisions, Zia-Hsu alternative design for
torsion, and pcaBeam (Ref 13.5) software.

s ~,

Interior ledge beam
A [ i |

|

|
I HEk L T——
' L10— 0* x 3074 2¢ l 16" x 16"
é ' LT doubie tee (typ) ' P/C cols
1 u n I / I |
70 N 0 E i I | |
c | | ) | |
' *L"spandrel beam | 16° x 16°
' : i I*/ M| T /P/C cols

A
40-0" | 40-0" 40'-0" | 40-0"

+

Partial plan of precast roof system

Design Criteria:

Live load = 30 Ib/fi2

Dead load = 90 Ib/ft2 (double tee + topping + insulation + roofing)
£ 5000 psi (w. = 150 pcf)

fy = 60,000 psi

Il

Roof members are 10 ft wide double tee units, 30 in, deep with 2 in. topping. Design of these units is not included in
this design example. For lateral support, alternate ends of roof members are fixed to supporting beams.

Code
Calculations and Discussion Reference

A. ACI 318 Procedure (11.6)
1. The load from double tee roof members is transferred to the spandrel beam as concentrated

forces and torques. For simplicity assume double tee loading on spandrel beam as uniform.
Calculate factored loading My, Vy, T, for spandrel beam.
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Code

Example 13.1 (cont’d) Calculations and.Discussion Reference

topping
o
t /

30"TT

I

487 e

3/8" welded pad
({reverse ends on alternate TT's}

3/8" elastomeric pad

/—-_h%_»\ Section A-A
(;‘,_ col
Dead load:
Superimposed = (0.090) (70)/2 =3.15
Spandrel = [(1.33) (4.00) + (1.33) (0.67)] 0.150 =0.94
Total = 4.08 kips/ft
Live load = (0.030) (70)/2 = 1.05 kips/ft
Factored load = (1.2) (4.08) + (1.6) (1.05) = 6.58 kips/ft 9.2.1
2
At center of span, M, = E_&;_fﬂ_ = 1316 ft-kips
End shear V; = (6.58) (40)/2 = 131.6 kips
Torsional factored Iload = 1.2 (3.15) + 1.2(% X % X 0.150)+ 1.6 (1.05) = 5.62 kips/ft

Eccentricity of double tee reactions relative to centerline of spandrel beam =8 + 4= 12 in.

End torsional moment T, = 5.62 [%) (—11—%) = 112.4 ft-kips

Assumed = 45.51in.

Critical section for torsion is at the face of the support because of concentrated torques
applied by the double tee stems at a distance less than d from the face of the support. 11.6.2.4
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Code

Example 13.1 {(cont’d) Calculations and Discussion Reference
Critical section for shear is also at the face of support because the load on the spandrel 11.1.3.{b)
beam is not applied close to the top of the member and because the concentrated forces 11.1.3.(c}

transferred by the double tee stems are at a distance less than d from the face of the
support.

Therefore, critical section is 8 in. from column centerline.

At critical section: [20.0 - (8.0/12) = 19.33 ft from midspan]
Vy = 131.6(19.33/20.0) = 127.20 kips

T, = 112.4 (19.33/20.0) = 108.6 ft-kips

The spandrel beam must be designed for the full factored torsional moment since it is 11.6.2.1
required to maintain equilibrinm.

2. Check if torsion may be neglected 11.6.1

Torsion may be neglected if T, < qﬂ;“

o = 0.75 9323

AZ
T, = 4Jf | =2 Eq. (9)
Pep

area enclosed by outside perimeter of spandrel beam, including the ledge

Agp
(16) (48) + (16) (8) = 768 + 128 = 896 in.2

outside perimeter of spandrel beam
2(16+48)+ 2 (8) = 144in.

Pcp

The limiting value to ignore torsion is:

AZ 8962 ) 1
JEE | =] = 07545000 | 22— | —— = 24.6 ft-kips < 108.6 ft-kips Eq.(12
Pt {pcp) 144 12,000 7 ¥ 12

Torsion must be considered.
3. Determine required area of stirrups for torsion
Design torsional strength must be equal to or greater than the required torsional strength:

0T, = T, Eq. (11-20)
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Av Ay _ogos+ 292 _ 0,037 in2inleg
8 2s 2

13-15

Code
Example 13.1 (cont’d) Calculations and Discussion Reference
where
2A AL
= I o Eq. (11-21)
§
Ap = 0.85A4
Agp = area enclosed by centerline of the outermost closed transverse torsional reinforcement
Assuming 1.25 in. cover {precast concrete exposed to weather) and No. 4 stirrup 7.7.3(a)
13"
Aon = (13) (45) + (8) (13) = 689 in.? i ‘
Ao = 0.85(689) = 585.6in.2 | |
' | Cent_erline
For nonprestressed member, use 8 = 45 degree I o |/ of stirmups 11.6.3.6(a)
Substituting in Eqgs. (11-20) and (11-21) 45 ! |
Ao T | o[ ]
$ 20A,fyycotd 'l ’i 13
21"
e |
A . (108.6) (12,900) = 0.025 in.2 /in./leg |
5 2 {0.75) (586.6) (60,000) (1.0)
Calculate required area of stirrups for shear
V. = 2. byd Eq. (11-3)
= 2 /5000 (16} (45.5)/1000
= 102.95 kips
From Eqgs. (11-1) and {11-2)
127.
v, = ey, = 272 10795 = 6665 kips
0] 0.75
Ay o Ve 8085 g p4inlsin,
$ fyvd 60 (45.5)
Determine combined shear and torsion stirrup requirements 11.6.3.8



Code
Example 13.1 {cont’'d) Calculations and Discussion Reference
Try No. 4 bar, Ay, = 0.20 in.2
8 = 020 = 5.26in. Use 5 in. minimum spacing.
0.038
6. Check maximum stirrup spacing
11.6.6

For torsion spacing must not exceed py/8 or 12 in.;

Ph = 2(13445)+2(6) = 128 in.

pp _ 128 .
3 8—16m.

For shear, spacing must not exceed d/2 or 24 in. (V, = 66.65kips < 4y/fcbyd = 2059kips)  71.5.5.1,
11.5.5.3

d 45.5
5 T 5= 2275 in.

Use 5 in. minimum and 12 in. maximum spacing.

7. Check minimum stirrup area

(A, +24,) = 075, bus _ 4755000 UOUD _ 417442
fyr 60,000

50b,s _ 50(16)(12) 2
> . = Te0000 - 0.16in. Eq. (11-23)

Areaprovided = 2 (0.20) = 0.40in2 > 0.17in.2 OK.

8. Determine stirrup layout

Since both shear and torsion are zero at the center of span, and are assumed to vary linearly
to the maximum value at the critical section, the start of maximum stirrup spacing can be
determined by simple proportion.

_sfentical) 1933 = 2 (1933) = $.05 ft, say 8 ft from midspan.
$ (maximumy) 2

9. Check for crushing of the concrete compression struts 11.6.3.1

2 2
Mo} _T.uP_lz-;_ <o Ye 4 f7 Eq. (11-18)
byd 17A2 by,d
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Code

Example 13.1 (cont’d) Calculations and Discussion Reference

2
J{ 127,200 ] + [(108’600 x 12) 128) JZ = 270.64 psi < 1004/, = 530psi O.K.

(16) (45.5) 1.7 (689)*
10. Calculate Jongitudinal torsion reinforcement 11.6.3.7
A £ 5
Ay = (—t) Ph ("ﬁ] cot” 8 Eq. (11-22)
8 £y
60 .9
A, = (0.025)(128) %0 (1.0) = 3.20in.
Check minimum area of longitudinal reinforcement
Syfc A A for
Apmin = ———2 - | =L|p = Eq. (11-24)
£y s fy
(é}—) must not be less than 2208 = 22 a6 _ 0.007 in.%/in. 11.6.5.3
$ fye 60,000
5+/5000 (896) . .
Af,min = —60’6'60—'—-—(0025) (122) = 2.23 in.2<3.20in.2
The longitudinal reinforcement required for torsion must be distributed arcund the 11.6.6.2

perimeter of the closed stirrups, at a maximum spacing of 12 in. The longitudinal
bars should be inside the stirrups. There should be at least one longitudinal bar in
each corner of the stirrups. Select 12 bars.

Area of each longitudinal bar = % = 0.264in2  Use No. 5 bars

/]

No. 4 closed stirrups @ 5"
\ﬂ 10 - No. 4 bars

/

for design of beam ledges.
5-No. 11 bars-_|
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Example 13.1 (cont’d) Calculations and Discussion

Code
Reference

11.

Size combined longitudinal reinforcement

Use No. 5 bars in sides and top corners of spandrel beam. Note that two of the twelve
longitudinal bars (bars at the bottom of the web) required for torsion are to be combined

with the ledge reinforcement. Design of the ledge reinforcement is not shown here.
See Part 15 of this document for design of beam ledges.

Determine required flexural reinforcement, assuming tension-controlled behavior,

0=0590
From Part 7,

_oMy 1316 x 12,000 — 52073 psi

R. =
" ogbd? 09 x 16 x 45.57

0.85¢ 2R
I O -
P=y [ 0.35f;]

085 x5 { 2 x 529.73
R ARt [ D | Il okl [
60 ( 0.85 x SOOOJ 0.0095

A, = pbd = 0.0095 x 16 x 45.5 = 6.92in.

As bottom reinforcement at midspan, provide (2/12) of the longitudinal torsion
reinforcement in addition to the flexural reinforcement,

(%)(3.20)4-6.92 = 7.45in2

As bottom reinforcement at end of span, provide (2/12) of the longitudinal torsion
reinforcement plus at least (1/3) the positive reinforcement for flexure:

2 6.92 ,
[EJ (3.20) + [T] = 2.84in2

Use 5-No. 11 bars (A;=7.80in.2 > 7.45in.2)
Check if section is tension-controlled, based on provided reinforcement.

From a strain compatibility analysis, conservatively assuming that the section is
subjected to flexure only (see Eq. (8) in Part 8),

13-18
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Code
Example 13.1 (cont’d) Calculations and Discussion Reference
g, =0.003 L—l =0.003 0.80 —1{=0.015>0.005
_ [ _%R, 1_‘flw4_osz9.73
17 1, 17 5000
Therefore, section is tension-controlled, and ¢ = 0.90. 10.34

Note that for strain compatability analysis including the effects of torsion, see Ref. 13.3.
Extend 2-No. 11 bars to end of girder (Ag;=3.12in.2 > 2.84 in.2)

Note that the longitudinal torsion reinforcement must be adequately anchored.

B. Zia-Hsu Alternative Torsion Design (Ref. 13-4)

For comparison torsional reinforcement requirements will be determined according to Zia-Hsu alternative de-
sign procedure for torsion design. Since a non-prestressed member is considered then fj,c = 0 will be used.

1. Determine the factored shear force V), and the factored torsional moment Ty
Based on calculations in A (ACI 318 Procedure):
Vy=127.2 kips
Ty = 108.6 ft-kips = 1303.2 in.-kips

2. Calculate the shear and torsional constant

Compute the largest szy value. Consider Options A and B.

16 .8 16
s
©
% -
1 o
! - e
1 I
Option A Option B
For Option A:

Txly = (162>< 48) + (87 16) = 13,312in.”
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Example 13.1 (cont’d) Calculations and Discussion

Code
Reference

For Option B:
T xly = (162>< 32) + (162x 24) = 14,336 in.>

byd _ 16 X 455

C, = =
ok 14,336

= 0.050787!—
in.
3. Check the minimum torsional moment

Tnin = ¢0-5\E vy x?y
= 075 x 0.5 x 45000 x 1.0 x 14,336/12,000 = 31.76ft-kips

101, 10 x 0
= {1+ B - 1‘1+ =10
where ¥ £ 3000

Since Ty > Typ torsion design is required.

4, Check the maximum torsional moment
1 ;
ECYJE T x%y

2
1+ W
30C,T,
% x 12.0 x 1.0 X 45000 x 14,336 1
)2 " 12,000

Tmax =

= 267.88ft—kips

N 12.0 x 1.0 x 1272
30 x 0.05078 x 1303.2

f,
where C = 12—10;?.C = 12—102, =120

C fC
This section is adequate for torsion as Ty < Tin.

5. Calculate nominal torsional moment strength provided by concrete under pure torsion

T, = 0.8ﬁ2x2y(2.5y—1.5)

_ 08 x +5000 x 1‘1"2332(;‘ @3 X L0715 _ o7 sg i kips

13-20
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Example 13.1 (cont’d) Reference

Calculations and Discussion

6. Calculate the nominal shear strength provided by concrete without torsion

V.= 2Ebwd =2 x /5000 x 16 x 45.5/1000 = 102.95 kips

Calculate the nominal torsional moment strengths under combined loading

T, T = 67.58 = 53.58 ft—kips

. 2 2
] T Ve 14| 738 127.2 Eq. (19)
v T 102.95108.6
c u

Calculate the nominal shear strengths under combined loading

8.

v
v, = ¢ - 102.95

= 62.75 kips
. 2 2
(v, \HMMJ
TV 67.58 127.2

Eq. (20)

9. Compute transverse reinforcement for torsion

T, = 108.6 fi—kips > ¢T, = 0.75 x 53.32 = 39.99 ft—kips.

Area of transverse torsional reinforcement required over distance s equals

A T, 1097.8 in.2 /in.
Ay s . = = 0.0208 Eq. (21)
] oL Xpyifye 1.50 x 13 x 45 x 60 leg

T, 108.6

T = —q)—-—TC = o 3358 = 91.22 ft~kips = 10947 in.~kips

o, = 0.66+o.33[ﬂ] = 0.66+O.33{%J = 1.80>1.50, use 1.50
X1

x, = 13 (shorter center-to-center dimension of a closed stirrup),
y,= 45 (longer center-to-center dimension of a closed stirrup).

10. Compute transverse reinforcement for shear
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Example 13.1 (cont’d) Calculations and Discussion

Code
Reference

11.

12.

Vo= 1272 kips > ¢V, = 0.75 x 62.75 = 47.06 kips

Arca of transverse shear
reinforcement required over distance s equals

.2
Ay _ Y | _10685 o in?
s d fyt 455 x 60 in.
where:
V. 127.2
V.= L_V.= —=-62.75 = 106.85 ft—kips
ST T 075 P

Calculate the total transverse reinforcement

The total transverse reinforcement required for shear and torsion is equal to

2
Av 4 2Bt _ 00391 + 2 x 0.0208 = 0.0807°%-
11,

s s

which is more than the required minimum of

£
[Av—+2ﬁ) =501+ 122 2w sy 4122 |10
] S Jmin fe f)’ fe 60,000

Assuming a two leg stirrup, the area of one leg should be

.2,
Av | At _ 5039172 + 0.0208 = 0.0404 2 /1
2s $ leg

Calculate longitudinal torsional reinforcement

The area of longitudinal torsional reinforcement required is equal to

0.01

in2

33—

.

Ag= ZA{XIZYIJ = Z%t—(xl-ﬂ(l) = 2 x 0.0208 x (13+45) = 2.41in?

which is greater than the smaller of the following two values

13-22
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Code
Example 13.1 (cont’d) Calculations and Discussion Reference
400x{ T, 2A
Ap=|— sl i L {xp+y)
Y| S s
L 3C,
01
_ | 400 % 16 13032 — 2 x 0.0208] (13+45) = 1.33in.2
60,000 127.2
130324 ———————
L 3 % 0.05078
400x| T, b
A= —5— | =502 | {(x1+y1)
fy |, + fy Eq. (24)
i 3C,
400 x 16[ 1303.2 ~ 0.0133| (13+45) = 3.00 in.?
60,000 127.2
13032 + ————
3 x 0.05078
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Code
Example 13.1 {(cont’d) Calculations and Discussion Reference

C. pcaBeam Solution

Torsional reinforcement requirements obtained from pcaBeam program are presented graphically in Fig. 13-6.
The diagram represents combined shear and torsion capacity in terms of required and provided reinforcement
area. The upper part of the diagram is related to the transverse reinforcement and shows that at the face of the
support the required reinforcement is

)
Av A o76ins

8 8 1.

The lower part of the diagram is related to the torsional longitudinal reinforcement and shows that Ay = 3.40 in.2
is required for torsional reinforcement at the face of the support. As shown in Fig. (13-6), close to the supports,
Eq. (11-22) governs the required amount of longitudinal torsional reinforcement. As expected, as Ty, decreases,
so does Ay. However, where Eq. (11-24) for Ag yip starts to govem, the amount of longitudinal reinforcement
increases, although T, decreases toward the midspan. This anomaly occurs where the minimum required trans-
verse reinforcement governs,

Torsional reinforcement requirements are compared in Table 13-1. Transverse reinforcement requirements are
in good agreement. Higher differences are observed for longitudinal reinforcement. The small discrepancy be-
tween ACI 318-05 and pcaBeam program (also based on ACI) can be attributed to numerical round-off errors
and to fixed 1.5 in. side cover assumed in pcaBeam.

Table 13-1 Comparison of required torsional reinforcement

Required ACI 318-05 Zia-Hsu pcaBeam
reinforcement
Ay 2At I-in.2
— 2 [? 0.074 0.081 0.076
Ay (in_Z) 3.20 2.41 3.40

13.24




Example 13.1 (cont’d)

Calculations and Discussion

Code
Reference

Beam Shear and Torsion Capacity: Stimep Intensity - inA2fin
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Beam Shear and Torsion Capacity: Longitudinal Bar Ares - in*2

LEGEND:

Demand - (Av+2AtYs
+- Demand - At's
Demand - Avis
Dermand - Al
Provided - (Av+2AatYs
= Provided - A!
------ Support Cenlerline
=———————Face of Support
----- — Critical Section

Figure 13-6 Torsional Reinforcement Requirements Obtained from pcaBeam Program
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14

Shear Friction

GENERAL CONSIDERATIONS

Provisions for shear friction were introduced in ACI 318-71. With the publication of ACI 318-83, 11.7 was
completely rewritten to expand the shear-friction concept to include applications (1) where the shear-friction
reinforcement is placed at an angle other than 90 degrees to the shear plane, (2) where concrete is cast against
concrete not intentionally roughened, and (3) with lightweight concrete. In addition, a performance statement
was added to allow “any other shear-transfer design methods™ substantiated by tests. It is noteworthy that 11.9
refers to 11.7 for the direct shear-transfer in brackets and corbels; see Part 15.

11.7 SHEAR-FRICTION

The shear-friction concept provides a convenient tool for the design of members for direct shear where it is
inappropriate to design for diagonal tension, as in precast connections, and in brackets and corbels. The concept
is simple to apply and allows the designer to visualize the structural action within the member or joint. The
approach is to assume that a crack has formed at an expected location, as iliustrated in Fig. 14-1. As slip begins
to occur along the crack, the roughness of the crack surface forces the opposing faces of the crack to separate.
This separation is resisted by reinforcement (A,f) across the assumed crack. The tensile force (Ayify) developed
in the reinforcement by this strain induces an equal and opposite normal clamping force, which in turn generates
a frictional force (1 Ayfy) parallel to the crack to resist further slip.

Shear Plane .
v, Slip
/-(ussumecl erack) — -~
L | |
i i ; ] | 1
| | |
| I i I | i
| | |
W
i i
\(Sheor Friction — w—
Reinforcement Vn

V= ANI,#

Figure 14-1 Idealization of the Shear-Friction Concept



1.7.1 Applications

Shear-friction design is to be used where direct shear is being transferred across a given plane. Situations where
shear-friction design is appropriate include the interface between concretes cast at different times, an interface
between concrete and steel, and connections of precast constructions, etc. Example locations of direct shear
transfer and potential cracks for application of the shear-friction concept are shown in Fig. 14-2 for several types
of members. Successful application of the concept depends on proper selection of location of the assumed slip
orcrack. In typical end or edge bearing applications, the crack tends to occur at an angle of about 20 degrees to
the vertical (see Example 14.2).

Deck slab \
1

I
|

SEESE]
Splice / Copped end/

Corbel Cumnc1ion~—m5
Cast in place oddition
\@ seeeins q

Potentinl cracks

/Calumn nole /

Figure 14-2 Applications of the Shear-Friction Concept and Polential Crack Locations
11.7.3 Shear-Transfer Design Methods

The shear-friction design method presented in 11.7.4 is based on the simplest model of shear-transfer behavior,
resulting in a conservative prediction of shear-transfer strength. Other more comprehensive shear-transfer relation-
ships provide closer predictions of shear-transfer strength. The performance statement of 11.7.3 “...any other
shear-transfer design methods...” includes the other methods within the scope and intent of 11.7. However, it
should be noted that the provisions of 11.7.5 through 11.7.10 apply to whatever shear-transfer method is used. One
of the more comprehensive methods is outlined in R11.7.3. Application of the “Modified Shear-Friction Method”
is illustrated in Part 15, Example 15.2. The 1992 edition of the code introduced in 17.5.2.3 a modified shear-
friction equation. It applies to the interface shear between precast concrete and cast-in-place concrete.

1.74 Shear-Friction Design Method

As with the other shear design applications, the code provisions for shear-friction are presented in terms of the
nominal shear-transfer strength Vi, for direct application in the basic shear sirength relation:

Design shear-transfer strength = Required shear-transfer strength

¢Vn= Vy Eq. (11-1)
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Note that & is 0.75 for shear and torsion (9.3.2.3). Furthermore, it is recommended that ¢ = 0.75 be used for all
design calculations involving shear-friction, where shear effecis predominate. For example, 11.9.3.1 specifies
the use of ¢ =0.75 for all design calculations in accordance with 11.9 (brackets and corbels). The nominal shear
strength V, is computed as:

Vi = Avfy il Eq. (11-25)

Combining Egs. (11-1) and (11-25), the required shear-transfer strength for shear-friction reinforcement perpen-
dicular to the shear plane is:

Vu < QAuyh
The required area of shear-friction reinforcement, Ayg, can be computed directly from:

— vll
of b

Ays

The condition where shear-friction reinforcement crosses the shear-plane at an angle ¢ other than 90 degrees is
illustrated in Fig. 14-3. The tensile force Ayfy is inclined to the crack and must be resolved into two compo-
nents: (1) a clamping component Afy sin o with an associated frictional force 1Ay sin o, and (2) a compo-
nent parallel to the crack that directly resists slip equal to Ayfy cos o. Adding the two components resisting slip,
the nominal shear-transfer strength becomes:

Vo = PAyfysing + Ayy cosa

Aytly (psing + cosou) Eq. (11-286)

Substituting this into Eq. (11-1):

Vu £ 0[pAysing +Ayfycosa]

Vi = pAyely sina +Ayfy cosa

Figure 14-3 idealization of Inclined Shear-Friction Reinforcement

For shear reinforcement inclined to the crack, the required area of shear-friction reinforcement, Ay¢, can be
computed directly from:

V

u
quy (1 sinct+ cosa)

Ay =
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Note that Eqg. {11-26) applies only when the shear force V,, produces tension in the shear friction reinforcement.

The shear-friction method assumes that all shear resistance is provided by fricticn between crack faces. The actual
mechanics of resistance to direct shear are more complex, since dowel action and the apparent cohesive strength of
the concrete both contribute to direct shear strength. It is, therefore, necessary to use artificially high values of the
cocfficient of friction y in the direct shear-friction equations so that the calculated shear strength will be in reason-
able agreement with test results. Use of these high coefficients gives predicted strengths that are a conservative
lower bound to test data, as shown in Fig. 14-4. The modified shear-friction design method givenin R11.7.3 is one
of several more comprehensive methods which provide closer estimates of the shear-transfer strength.

1600 T T T T T
» Test Results

140(3 ' . - . %
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] [ ] .
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1000 F Modified » o . . - -

Shear-Friction +

V,/A Limit

V,/A_, psi

S -4 0.2 x 3000 psi

Shear-Friction
Dasign Method

. “ply >200 pst
- n i M 1

200 400 600 800 1000 1200

pl. psi

Figure 14-4 Effect of Shear-Fiiction Reinforcement on Shear Transfer Strength

11.7.4.3 Coefficient of Friction—The “effective” coefficients of friction, |, for the various interface con-
ditions include a parameter A which accounts for the somewhat lower shear strength of all-lightweight and

sand-lightweight concretes. For example, the p value for all lightweight concrete (A = 0.75) placed against
hardened concrete not intentionally roughened is 0.6 (0.75) = 0.45. The coefficient of friction for different
interface conditions is as follows:

Concrete placed monolithically ..o 1LAR

Concrete placed against hardened concrete with
surface intentionally roughened as specified in 11.7.9............... 1.0A

Concrete placed against hardened concrete
not intenticnally roughened ...........ccoooeeieiiiiieeeen 0U6R

Concrete anchored to as-rolled structural steel by
headed studs or by reinforcing bars {see 11.7.10)

where A = 1.0 for normal weight concrete. 0.85 for sand-lightweight concrete, and 0.75 for “all light
weight” concrete.
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11.7.5 Maximum Shear-Transfer Strength

The shear-transfer strength Vy cannot be taken greater than 0.2 f¢., nor 800 psi times the area of concrete section
resisting shear transfer. This upper limit on V; effectively limits the maximum reinforcement, as shown in
Fig. [4-4. Also, for lightweight concretes, 11.9.3.2.2 limits the shear-transfer strength Vy, along the shear plane
for design applications with low shear span-to-depth ratios ay/d , such as brackets and corbels. This further
restriction on lightweight concrete is iltustrated in Example 14.1.

11.7.7 Normal Forces

Equations (11-23) and (11-26) assume that there are no forces other than shear acting on the shear plane. A
certain amount of moment is almost always present in brackets, corbels, and other connections due to eccentric-
ity of loads or applied moments at connections. In case of moments acting on a shear plane, the flexural tension
stresses and flexural compression stresses are in equilibriumn. There is no change in the resultant compression
Ay acting across the shear plane and the shear-transfer strength is not changed. It is therefore not necessary to
provide additional reinforcement to resist the flexoral tension stresses, unless the required flexural tension rein-
forcement exceeds the amount of shear-transfer reinforcement provided in the flexural tension zone.

Joints may also carry a significant amount of tension due to restrained shrinkage or thermal shortening of the
connected members. Friction of bearing pads, for example, can cause appreciable tensile forces on a corbel
supporting a member subject to shortening. Therefore, it is recommended, although not generally required, that
the member be designed for a minimum direct tensile force of at least 0.2V, in addition to the shear. This
minimum force is required for design of connections such as brackets or corbels (see 11.9.3.4), unless the actual
force is accurately known. Reinforcement must be provided for direct tension according to 11.7.7, using Ay =

Nuc/ § fy, where Ny 1s the factored tensile force.

Since direct tension perpendicular to the assumed crack (shear plane) detracts from the shear-transfer strength, it
follows that compression will add to the strength. Section 11.7.7 acknowledges this condition by allowing a
“permanent net compression” to be added to the shear-friction clamping force, Ayfy. 1t is recommended, al-
though not required, to use a reduction factor of 0.9 for strength contribution from such compressive loads.

11.7.8 — 11.7.10  Additional Requirements

Section 11.7.8 requires that the shear-friction reinforcement be “appropriately placed” along the shear plane.
Where no moment acts on the shear plane, uniform distribution of the bars is proper. Where a moment exists, the
reinforcement should be distributed in the flexural tension zone.

Reinforcement should be adequately embedded on both sides of the shear plane to develop the full yield strength
of the bars. Since space is limited in thin walls, corbels, and brackets, it is often necessary to use special
anchorage details such as welded plates, angles, or cross bars. Reinforcement should be anchored in confined
concrete. Confinement may be provided by beam or column ties, “external” concrete, or special added rein-
forcement.

In 11.7.9, if coefficient of friction W is taken equal to 1.0A, concrete at the interface must be roughened to a full
amplitude of approximately 1/4 in. This can be accomplished by raking the plastic concrete or by bushhammering
or chiseling hardened concrete surfaces.

A final requirement of 11.7.10, often overlooked, is that structural steel interfaces must be clean and free of
paint. This requirement is based on tests to evaluate the friction coefficient for concrete anchored to unpainted
structural steel by studs or reinforcing steel (p = 0.7). Data are not available for painted surfaces. If painted
surfaces are to be used, a lower value of u would be appropriate.
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DESIGN EXAMPLES

In addition to Examples 14.1 and 14.2 of this part, shear-friction design is also illustrated for direct shear-
transfer in brackets and corbels (see Part 15), horizontal shear transfer between composite members (see Part 12)

and at colemn/footing connections (see Part 22).
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Example 14.1—Shear-Friction Design

A tilt-up wall panel is subject to the factored seismic shear forces shown below. Design the shear anchors
assurning lightweight concrete, we = 95 pef. ¢ = 4000 psi and fy = 60,000 psi.

14” lang
connecting bar

]
t9.3%

Dry pack ofter welding

-~ ~ - . Exoggerated stretching of connector bar due Yo wall sherfening

ol |
Code
Calculations and Discussion Reference
1. Design anchor steel using shear-friction method.
Center plate is most heavily loaded. Try 2in. X 4in. x 1/4 in. plate.
Ve =35701b
Vy S 0V Eq. (11-1)
Vu £ ¢ (Ayfyn) Eq. (11-25)
For unpainted steel in contact with all lightweight concrete (95 pef):
U=07A=07x0.75=0.525 11.7.4.3
9323

$=075

v, 3570

» u b3 .
Solving for Ave = 47 /=075 (60,000)(0.525) = O-13in-?

Use 2-No. 3 bars per plate (Ayt = 0.22in.2)

Note: Weld bars to plates to develop full fy. Length of bar must be adequate to fully develop bar.
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Code
Example 14.1 (cont’d) Calculations and Discussion Reference

Check maximum shear-transfer strength permitted for connection. For lightweight 11.8.3.2.2
aggregate concrete:

Vitmax) = [0.2-0.07(%"]] fib,d or [300-230(%1]] b,d

For the purposes of the above equations, assume a, = thickness of plate = 0.25 in,,
and d = distance from edge of plate to center of farthest attached rebar = 2.5 in.:

a, = 0.25'

11
a _ 0B,
d 25 :

4s|

Assume, for the purposes of the above equations, d=25" V]
that byd = A; = contact area of plate: LA

= = = i 2
bed = A, = 2x 4 = 8in, -No. 3 Bars A i

Vammaxy = [0.2 - 0.07 (0.1)] (4000} (8) = 61761b

or Vy = [800- (280 x 0.1)} (8) = 61761b
O Vamaxy = 0.75 (6176) = 4632 1b

Vy = 35701b € ¢ Vamao = 463216 OK. - Eq. (11-1)

Use2in. X 4in. X % in. plates, with 2-No. 3 bars.
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Example 14.2—Shear-Friction Design (Inclined Shear Plane)

For the pilaster beam support shown, design for shear transfer across the potential crack plane. Assume a crack
at an angle of about 20 degrees to the vertical, as shown below. Beam reactions are D = 25 kips, L= 30 kips. Use

T =20 kips as an estimate of shrinkage and temperature change effects. f{ = 3500 psi and £, = 60,000 psi.

‘*g”*’i N 1 R
4" -
[Pl

; | 1 P/sC Begm D“‘l
T

.
Wali i
Bearing Fad —
Paotential Crack Plane

Filaster

_VA__'—

Plan Elevation
Code
Calculations and Discussion Reference
1. Factored loads to be considered:
Beamreaction Ry = 1.2D + 1.6L = 1.2(25) + 1.6(30) = 30 + 48 = 78 kips Eq. (9-2}
Shrinkage and temperature effects Ty = 1.6 (20) = 32 kips (govemns) 11.9.3.4
but not less than 0.2 (R,) = 0.2 (78) = 15.6 kips
Note that the live load factor of 1.6 is used with T, due to the low confidence level in
determining shrinkage and temperature effects occurring in service. Also, a minimum value
of 20 percent of the beam reaction is considered {see 11.9.3.4 for corbel design).
2. Evaluate force conditions along potential crack plane.
Rycosa
Direct shear transfer force along shear plane; Ry
Vu = Rysina + Tycosa = 78 (sin70°) + 32 (cos70°) T, sino Rysing
=733 + 11.0 = 843 kips Tycosa I
. . Tu
Net tension (or compression) across shear plane: / A\
Ny = Tysinet - Rycosa = 32 (sin70°) - 78 (cos70°) Mu /A\
N/,
= 30.1 - 26.7 = 3.4 kips (net tension) Ly
209 ﬁ\ Aty cosa
/IL\? Avtly sina
/,% p.(Avffy sina)

/
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Code
Example 14.2 (cont’d) Calculations and Discussion Reference
If the load conditions were such as to result in net compression across the shear plane, it still
should not have been used to reduce the required Ay, because of the uncertainty in evaluat-
ing the shrinkage and temperature effects. Also, 11.7.7 permits a reduction in Ay only for
“permanent” net compression. .
3. Shear-friction reinforcement to resist direct shear transfer. Use w for concrete placed
monolithically.
v,
Ayt = — —H Eq. (11-26)
(pty (U sinxx + coso)
=141 =14 x 1.0 = 1.4 11.7.4.3
84.3 : i
Ay = = 1.13in2 [y from 11.7.4.3] s

0.75 x 60 (1.4sin70° + cos70)

4, Reinforcement to resist net tension.

Ny 3.4

A, = L , = 0.08 in.2
df, (sina) 075 x 60 (sin70°)

Since failure is primarily controlled by shear, use ¢ = 0.75 (see 11.9.3.1 for corbel design).

5. Add Ayf and A; for total area of required reinforcement. Distribute reinforcement
uniformly along the potential crack plane.

Ag = 113 + 0.08 = 1.21in.2
Use No. 3 closed ties (2 legs per tig)
Number required = 1.21 /{2 (0.11}] = 5.5, say 6.0 ties

Ties should be distributed along length of potential crack plane; approximate
length = 5/(tan20°) = 14 in.

Use 6-No. 3closed ties at + 3 in.
5 spacing at top of pilaster.
—
3 rs
/
7 |__6-No. 3 ties @
14" L 1 41 3" spacing

) T | _Wall
a1 reinforcement

[
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Code
Example 14.2 (cont’d) Calculations and Discussion Reference

6. Check reinforcement requirements for dead load only plus shrinkage and temperature ef-
fects. Use 0.9 load factor for dead load to maximize net tension across shear plane.

Ry = 09D = 0.9 (25) = 22.5kips, Ty = 32 kips
Vy = 22.5 (5in70°) + 32 (cos70°) = 21.1 + 11.0 = 32.1 kips
Ny = 32 (5in70°) - 22.5 (cos70°) = 30.1 - 7.7 = 22.4 kips (net tension)

32.1
T 075 X 60 (1.4s5in70° + cos 709

Ay = 043in?

22.4

= : = 0.53in.?
0.75 x 60x sin70°

Al'l

As = 043+ 0.53= 09in2 < 1.21in.2
Therefore, original design for full dead load + live load governs.
7. Check maximum shear-transfer strength permitted
Va(maxy = [0.2f,A.] or [800A ] 11.7.5

Taking the width of the pilaster to be 16 in.:

5
— — )
Ay = [sin 2()0) X 16 = 2341in.

Vamag = 0.2 (3500) (234)/1000 = 164kips  (governs)
or Vn(max) = 800 (234)/1000 = 187 kips
®Vnamaxy = 0.75 (164) = 123 kips

Vy = 84.3Kkips € 0Vymaxg = 123kips  O.K. Eq. (11-1)
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15

Brackets, Corbels and Beam Ledges

GENERAL CONSIDERATIONS

Provisions for the design of brackets and corbels were introduced in ACI 318-71. These provisions
were derived based on extensive test results. The 1977 edition of the code permitted design of brackets
and corbels based on shear friction, but maintained the original design equations. The provisions were
completely revised in ACI 318-83, eliminating the empirical equations of the 1971 and 1977 codes,
and simplifying design by using the shear-friction method exclusively for nominal shear-transfer strength
V- From 1971 through 1999 code, the provisions were strictly limited to shear span-to-depth ratio
ay/d less than or equal to 1.0. Since 2002, the code allows the use of the provisions of Appendix A,
Strut-and-tie models, to design brackets and corbels with ay/d ratios less than 2.0, while the provisions
of 11.9 continue to apply only for a,/d ratios less than or equal to 1.0.

11.9 LIMITATIONS OF BRACKET AND CORBEL PROVISIONS

The design procedure for brackets and corbels recognizes the deep beam or simple truss action of these short-
shear-span members, as illustrated in Fig. 15-1. Four potential failure modes shown in Fig. 15-1 shall be pre-
vented: (1) Direct shear failure at the interface between bracket or corbel and supporting member; (2) Yielding
of the tension tie due to moment and direct tension; (3) Crushing of the internal compression “strut;” and (4)
Localized bearing or shear failure under the loaded area.

—A— (1)  Shear Plane
(2) Tension Tie
(3) Compression Strut
(4) Localized Bearing
@ vy,
Nuc
dAghy - >
@
d h
@
1

Figure 15-1 Structural Action of Corbel



For brackets and corbels with a shear span-to-depth ratio ay/d less than 2, the provision of Appendix A may be
used for design. The provisions of 11.9.3 and 11.9.4 are permitted with a,/d < 1 and the horizontal force

Ny € Vi

Regardless which design method is used, the provisions of 11.9.2, 11.9.3.2.1, 11.9.3.2.2, 11.9.5, 11.9.6, and
11.9.7 must be satisfied.

When a,fd is greater than 2.0, brackets and corbels shall be designed as cantilevers subjected to the applicable
provisions of flexure and shear.

11.9.1-11.9.5 Design Provisions

The critical section for design of brackets and corbels is taken at the face of the support. This section should be
designed to resist simultaneously a shear Vi, a moment My = V,ja, + Ny, (h - d), and a horizontal tensile force
Ny (11.9.3). The value of Ny must be not less than 0.2V, unless special provisions are made to avoid tensile
forces (11.9.3.4). This minitum value of Ny is established to account for the uncertain behavior of a slip joint
and/or flexible bearings. Also, the tension force Ny typically is due to indeterminate causes such as restrained
shrinkage or temperature stresses. In any case it shall be treated as a live load with load factor of 1.6 (11.9.3.4).
Since corbel and bracket design is predominantly controlled by shear, 11.9.3.1 specifies that the strength reduc-
tion factor ¢ shall be taken equal to 0.75 for all design conditions.

For normal weight concrete, shear strength Vy is limited to the smaller of 0.2 f.by,d and 800by,d (11.9.3.2). For
lightweight concrete, V;, is limited by the provisions of 11.9.3.2.2, which are somewhat more restrictive than
those for normal weight concrete. Tests show that for lightweight concrete, V;, is a function of 7, and a,/d.

For brackets and corbels, the required reinforcement is:

Ayr = area of shear-friction reinforcement to resist direct shear V,,, computed in accordance with
11.7 (11.9.3.2).

Ay = area of flexural reinforcement to resist moment My = Vya, + Ny (b - d), computed in
accordance with 10.2 and 10.3 (11.9.3.3).

Ay = area of tensile reinforcement to resist direct tensile force Ny, computed in accordance with
11.9.3.4.

Actual reinforcement is to be provided as shown in Fig. 15-2 and includes:
Agc = primary tension reinforcement
Ap = shear reinforcement (closed stirrups or ties)

This reinforcement is provided such that total amount of reinforcement Ay + A, crossing the face of support is
the greater of (a) Ay + Ag, and (b) 3A¢/2 + A, to satisfy criteria based on test results.15-1

If case (a) controls (i.e., Ay > 3A¢/2):

Age = Ayr+ Ap— Ay
= Ayr+Ag - 0.5 (Age — Ap) 11.9.4
or  Ag. = 2A4/3 + A, (primary tension reinforcement)
and Ap = (0.5) (Age — Ap) = Av/3 (closed stirrups or ties) 11.9.4
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If case (b) controls (i.e., 3A:/2 > Ay
Age = 3Ap/2+Ap - Ay
= 3A¢/ 2+ Ap - 0.5 (Agc— Ap)
of Age = Af + Ap (primary tension reinforcement)
and Ay = (0.5) (Age - Ap) = Ap/2 {(closed stirrups or ties)

In both cases () and (b), Ap = {0.5) (A - Ap) determines the amount of shear reinforcement to be provided as
closed stirrups parallel to A and uniformly distributed within (2/3)d adjacent to Ag. per 11.9.4.

A minimum ratio of primary tension reinforcement p i, = 0.04 £{/fy is required to ensure ductile behavior after
cracking under moment and direct tensile force (11.9.5).

A~

] l-.— By —yo
bearing plate ; | Agc (primary tension

" Vy / reinforcement)
\
A\

N
_[
h d \
N A, (closed
stirrups or ties)

Framing bar to secure
stirups or ties

Figure 15-2 Corbel Reinforcement
BEAM LEDGES

Beam with ledges shall be designed for the overall member effects of flexure, shear, axial forces, and torsion, as
well as for local effects in the vicinity of the ledge (Refs. 15.2-15.6). The design of beam ledges is not specifi-
cally addressed by the code. This section addresses only local failure modes and reinforcement requirements to
prevent such failure.

Design of beam ledges is somewhat similar to that of a bracket or corbel with respect to loading conditions.
Additional design considerations and reinforcement details need to be considered in beam ledges. Accordingly,
even though not specifically addressed by the code, special design of beam ledges is included in this Part. Some
failure modes discussed above for brackets and corbels are also shown for beam ledges in Fig. 15-3. However,
with beam ledges, two additional failure modes shall be considered (see Fig. 15-3): (5) separation between
ledge and beam web near the top of the ledge in the vicinity of the ledge load and (6) punching shear. The
vertical load applied to the ledge is resisted by a compression strut. In turn, the vertical component of the
inclined compression strut must be picked up by the web stirrups (stirrup legs Ay adjacent to the side face of the
web) acting as “hanger” reinforcement to carry the ledge load 10 the top of beam. At the reentrant comer of the
ledge to web intersection, a diagonal crack would extend to the stirrup and run downward next to the stirrup.
Accordingly, a slightly larger shear span, ag, is used to compute the moment due to Vy. Therefore, the critical
section for moment is taken at center of beam stirrups, not at face of beam. Also, for beam ledges, the internal
moment arm should not be taken greater than 0.8h for flexural strength.
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(3) Compression Strut

Vi {(4)  Localized Bearing
] & (5) Separation
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- uc f
F g
h d ®

Figure 15-3 Structural Action of Beam Ledge

The design procedure described in this section is based on investigations performed by Mirza and Furlong (Refs.
15.3t015.5). The key information needed by the designer is establishing the effective width of ledge for each of
the potential failure modes. These effective widths were determined by Mirza and Furlong through analytical
investigations, with results verified by large scale testing. Design of beam ledges can also be performed by the
strut-and-tie procedure (refer to Part 17 for discussion).

Design to prevent local failure modes requires consideration of the following actions:
I. ShearV,

2. Horizontal tensile force Ny greater or equal to 0.2V, but not greater than V,,,

3. Moment My = Vyar + Ny (h-d)

Reinforcement for the different failure modes is determined based on the effective widths or critical sections
discussed below. In all cases, the required strengths (Vy, My, or Ny) should be less than or equal to the design

strengths (¢V,, OM,, or 6N, ). The strength reduction factor ¢ is taken equal to 0.75 for all actions, as for

brackets and corbels. The strength requirements for different failure modes are shown below for normal weight
concrete. When lightweight aggregate concrete is used, modifications should be made per 11.2.

a. Shear Friction

Parameters affecting determination of the shear friction reinforcement are illustrated in Figure 15-4.
Vy < 02087 (W +4a,)d (1)

< ¢ UAyy

where
d = effective depth of ledge from centroid of top layer of ledge transverse reinforcement to the
bottom of the ledge (see Fig. 15-4)

f = coefficient of friction per 11.7.4.3.
Note that per 11.7.5, 0.2 ] £ 800 psi.

If (W + 4ay) > S, then Vy < 0.2¢f Sd, where S is the distance between center of adjacent bearings on the
same ledge.

Atledge ends, Vy; £ 0.20f; (2c)d, where ¢ is the distance from center of end bearing to the end of the ledge.
However, 2c should be less than or equal to the smaller of (W + 4ay) and S.
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Figure 15-4 Shear Friction

b. Flexure

C.

Conditions for flexure and direct tension are shown in Figure 15-5.
Vuar + Nuc (b-d) < ¢ Agfy (jd) (@)
Nuc € ¢ Apfy
The primary tension reinforcement Age should equal the greater of (A + Aq) or (2Ayf/3 + Ay). If (W + 5ag)
> §, reinforcement should be placed over distance S. At ledge ends, reinforcement should be placed over

distance (2¢), where ¢ is the distance from the center of the end bearing to the end of the ledge, but not more
than 1/2 (W + Sag). Reference 15.5 recommends taking jd = 0.8d.

T 1

Vy

74 Vy & &
.nLn.‘ ...E.”C

2 4 9 8j9 [ & & @

W + ba;

A

Figure 15-5 Flexure and Direct Tension

Punching Shear
Critical perimeter for punching shear design is illustrated in Fig. 15-6.
Vy < 40f] (W+2L+2dp) dg (3

where dy = effective depth of ledge from top of ledge to center of bottom transverse reinforcement (see
Fig. 15-6)

Truncated pyramids from adjacent bearings should not overlap. Atledge ends,

Vu < 40.fE0 (W+L+dp) dg
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Figure 15-6 Punching Shear
Hanger Reinforcement

Hanger reinforcement should be proportioned to satisfy strength. Furthermore, serviceability criteria should
be considered when the ledge is subjected to a large number of live load repetitions, as in parking garages
and bridges. As shown in Figure 15-7, strength is governed by

AL,
oS “

Vu

IA

where Ay = area of one leg of hanger reinforcement
S = distance between ledge loads
s = spacing of hanger reinforcement

Serviceability is governed by

A, (0.5f
V< J(S—Y—) (W + 3av) (5)

where V is the reaction due to service dead load and live load.

- 4+
K ‘.!l V, @S5 27 17

W+ 3a,

—
- o

Figure 15-7 Hanger Reinforcement to Prevent Separation of Ledge from Stem
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In addition, hanger reinforcement in inverted tees is governed by consideration of the shear failure mode
depicted in Figure 15-8:

AS,
2V, < 2[2¢Jﬁbfd;] + ¢Ty W + 2d}) (6)

where d} = flange depth from top of ledge to center of bottom longitudinal reinforcerment (see Fig. 15-8)

Y4
Vu
4 f
w
L by _ W + 20
e L___.l

Figure 15-8 Hanger Reinforcement to Prevent Partiai Separation of Ledge from Stem and Shear of the Ledge

11.9.6 Development and Anchorage of Reinforcement

All reinforcement must be fully developed on both sides of the critical section. Anchorage within the support is
usually accomplished by embedment or hooks. Within the bracket or corbel, the distance between load and
support face is usually too short, so that special anchorage must be provided at the outer ends of both primary
reinforcement Ay and shear reinforcement Ay, Anchorage of Ay is normally provided by welding an anchor bar
of equal size across the ends of Ay (Fig. 15-9(a)) or welding to an armor angle. In the former case, the anchor
bar must be located beyond the edge of the loaded area. Where anchorage is provided by a hook or a loop in Ag,
the load must not project beyond the straight portion of the hook or loop (Fig. 15-9(b}). In beam ledges, anchor-
age may be provided by a hook or loop, with the same limitation on the load location (Fig. 15-10). Where a
corbel or beam ledge is designed to resist specific horizontal forces, the bearing plate should be welded to Agc.

Load not to
. extend beyond
Primary = 3/4 db this line
reinforcement, A,-,C S,
tw=dp/2 &>
nw— dbfz % mﬂ -
Anchor bar 3/4 db

(a) (b)
Figure 15-9 Anchorage Details Using (a) Cross-Bar Weld and (b} Loop Bar Detail
The closed stirrups or ties used for A, must be similarly anchored, usually by engaging a “framing bar” of the

same diameter as the closed stirrups or ties (see Fig. 15-2).
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?earx Stirrup Vy
e e
9% I Bearing not to extend over
: bend of (Ag; + Ay) bars (11.9.7)
\A (Asc + Ap)” ’ N Ny
I e— Straight—

i
i *Limited to small bar sizes

d ] by tight bends required

Figure 15-10 Bar Details for Beam Ledge
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Example 15.1—Corbel Design

Design a corbel with minimum dimensions to support a beam as shown below. The corbel is to project from a
14-in. square column. Restrained creep and shrinkage create a horizontal force of 20 kips at the welded bearing.

. = 5000 psi (normal weight) I

fy = i g

y = 60,000 psi O Beam
Beam reactions: T:

— 1/2" Steel Bearing Plale

DL = 24 kips ACorbel Support

LL =37.5 kips

T =20kips S Column

Code
Calculations and Discussion Reference

1. Size bearing plate based on bearing strength on concrete according to 10.17. Width of

bearing plate = 14 in.

V= L2024 + 1.6(37.5) = B8.8kips Eq. (9-2)

Vu £ 0Py = (0.85fCA)) 10.17.1

b = 0.65 9324

88.8 = 0.65(0.85 x 5 x A1} = 2.763A;

Ap = B8 3142
2.763

32.14
Bearing length = TS = 2.301in.

Use 2.5 in. X 14 in. bearing plate.

2. Determine shear span ‘a,” with 1 in. max. clearance
atbeamend. Beam reaction is assumed at third point
of bearing plate to simulate rotation of supported
girder and triangular distribution of stress under bear-
ing pad.

2
ay = 3 (2.5) + 1.0 = 267 in.

Use ay = 3 in. maximum.

Detail cross bar just outside outer bearing edge.
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Example 15.1 (cont’d) Calculations and Discussion Referi?pgz
3. Determine total depth of corbel based on limiting shear-transfer strength V.
Vg 1s the least of V, = B0Oby,d (governs) 11.9.3.2.1
or Vp = 02£{bgyd = (0.2 x 5000)byd = 1000byd
Thus, Vy £ ¢V, = ¢ (800byd)
Required d = E% = 10.57 in.
Assuming No. 8 bar, 3/8 in. steel plate, plus tolerance,
h = 10.57 + 1.0 = 11.57 in. Useh = 12in.
Fordesign,d = 12.0 - 1.0 = 11.0in.
- 027<1 OK. 11.9.1
Also, Nye = 1.6 x20 = 32.0kips (treat as live load)
Nuge<V, = 888kips OXK.
4. Determine shear-friction reinforcement Ayr. 11.9.3.2
Ayt = ¢¥;u = o7 (63)8&?'4)( 5 = L4lin2 11.7.4.1
5. Determine direct tension reinforcement A,
Ap = I:;;’: = 0'7?’52;? - =071 in.2 11.9.3.1
6. Determine flexural reinforcement As. 11.7.4.3
My = Vyay+ Nye(h - d) = 88.8(3) + 32(12 - 11) = 298.4 in.-kips 11.9.3.3
Find A using conventional flexural design methods or conservatively use jy,d = 0.9d.
At = 575 (6(;2}9:;(.;9 <1 - 067 in.2
Note that for all design calculations, ¢ =0.75 11.9.3.1

15-10
- _;,:L,E'E.



Code

Example 15.1 (cont’d) Caiculations and Discussion Reference
7. Determine primary tension reinforcement As. 11.9.3.5
2
%Avf =3 (1.41) = 094in.2 > Af = 0.67 in.%; Therefore, —§~Avf controls design
Ag = %Avf + Ay =094 + 071 = 1.65in.2
Use 2-No. 9 bars, Agc = 2.0in.2
Check minimum reinforcement: 11.9.5
Pmin = 0.04 & = (.04 (—)— 0.0033
S TUA60 o
Agcminy = 0.0033 (14) (11) = 051in2 < Ay = 20in? O.K.
8. Determine shear reinforcement Ay 11.94
Ap = 05(Ag - Ap) = 0.5(2.0 - 0.71) = 0.65in2
Use 3-No. 3 stirrups, Ay, = 0.66 in.2
Distribute stirrups in two-thirds of effective corbel depth adjacent to Age.
f 1" max.
2Vax14x1£"
Steel Plate
2 #9 bars {main 5x14x%s"
reinforcement) N | __Slee! Plate
\\
~
N
\
A
\
i
I
!
/ |
i / - 11.9.7
3 #3 closed ties @ 2" o.c. ¢ |

#3 framing bar

Smalier corbel
petmitted with
steel guard angle
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Example 15.2—Corbel Design . .. Using Lightweight Concrete and Modified Shear-
Friction Method

Design a corbel to project from a 14-in.-square column to support the following beam reactions:

e ,—— 1" max

A

Pead load = 32 kips
Live load = 30kips

Horizontal force = 24 kips

£, = 4000 psi (all lightweight)

fy = 60,000 psi
Code
Calculations and Discussion Reference
1. Size bearing plate
Ve = 12(32) + 1.6 (30) = 86.4 kips Eq. (9-2)
Vu £ 0Pnp = 0 (0.85fLA)) 10.17.1
& = 0.65 9324

[

LFS]

86.4 = 0.65(0.85 x 4 x Ay)

Solving, A; = 39.1in.2

Length of bearing required = éiTl = 2.8in.

Use 14 in. x 3 in. bearing plate.

Determine ay,.
Assume beam reaction to act at outer third point of bearing plate, and 1 in. gap between back edge of bearing
plate and column face. Therefore:

a,= 1 + %(3} = 3in,

Determine total depth of corbel based on limiting shear-transfer strength V,,. For easier
placement of reinforcement and concrete, try h = 15 in. Assuming No. 8 bar:
d=15-035-0.375 = 1413 in., say 14 in.

a, 3
—_ = — =021 < 1.0 .9
r m 11.9.1

Nuc=1.6 x 24 = 384 kips < V, = 86.4kips O.K.
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Code
Example 15.2 (cont’d) Calculations and Discussion Reference

For lightweight concrete and f: = 4000 psi, Vj is the least of: 11.9.322

Vp = [soo—zso%'_] byd = [800 - (280 x 0.21)] 14 x % = 1453 kips

Vp = (0.2 - 0.07 a—;-)f’cbwd = [0.2 - 0.07 (0.21)] (4,000) (14) %g_o = 145.3 kips

$Vy = 0.75(145.3) = 109.0kips > V, = 86.4kips O.K.
4. Determine shear-friction reinforcement Ay 11.9.32

Using a Madified Shear-Friction Method as permitted by 11.7.3 (see R11.7.3):

. Avffy .
Vo = 0.8Ayfy + Kibyd, with o not less than 200 psi

w

For all lightweight concrete, Ky = 200 psi R11.7.3

Vi € 0Vp = ¢ (0.8Ayfy + 0.2byd)

Solving for Ayf:
Ay = WM but not less than 0.2 x 29
(0.8, fy

_ 86.4 - (075 x 02 x 14 x 14) = 158in2 (governs)

0.75 (0.8 x 60)

14 x 14 .
but not less than 0.2 x bud _ 0.2 x a = 0.65in.”
fy 60
For comparison, compute Ayt by Eq. (11-25): 11.7.4.3

For lightweight concrete,

u o= L4A = 1.4(0.75) = 1.05

Voo _ 86.4 = 1.83in? > 158in2

Y 0.75 x 60 x 1.05

Ayr

Note: Modified shear-friction method presented in R11.7.3 would give a closer estimate of shear-transfer
strength than the conservative shear-friction method in 11.7.4.1.

5. Determine flexural reinforcement Ay. 11.9.3.3
My = Vyay + Ny (h-d) = 864 (3) + 384 (15 - 14.0) = 297.6 in.-kips

Find As using conventionat flexural design methods, or conservatively use jyd = 0.9d
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Code

Example 15.2 (cont’d) Calculations and Discussion Reference

M, 297.6

= = 0.53in.?
¢fy jud 075 x 60 x 0.9 x 14

Af

Note that for all design calculations, ¢ = 0.75
6. Determine direct tension reinforcement Ay,

Ap = Nue o 383 g5y

ofy 0.75 x 60

7. Determine primary tension reinforcement Age.

2
(%)Avf = (%) 1.83 = 1.22in.2 > Ay = 0.53 in.2; Therefore, (%)AVfCOHU'OIS design.

Ay = (%)Avf + Ay, = 122 + 0.85 = 2.07in.2

Use 3-No. 8 bars, A = 2.37in.2
a
Check Ageqminy = 0.04 (E) 14 x 14 = 052in2 < A, = 237in2 O.K.

8. Determine shear reinforcement Ay,
Ap = 05 (Ag - Ap) = 0.5(2.37 - 0.85) = 0.76in.2
Use 4-No. 3 stirrups, Ay, = 0.88 in.2

The shear reinforcement is to be placed within two-thirds of the effective corbel depth
adjacent to Age.

Smax = (%]% = 233 in. Use 2ls in. o.c. stirrup spacing.

9. Corbel details
Corbel will project (1 +3 + 2) = 6 in. from column face.
Use 6-in. depth at outer face of corbel, then depth at outer edge of bearing plate will be

6+3=5%in > % = 7.0in. OK.

A to be anchored at front face of corbel by welding a No. 8 bar transversely across ends of
Ay bars.

Age must be anchored within column by standard hook.

15-14
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Code

Example 15.2 {cont’d) Calculations and Discussion Reference
1" Max.
—— ] —
4 1-
6“
No. 8 Cross Bar g o
Welded e
3-No. 7 Bars 17117i)
Weldedto ——— < Sy 1
Bearing Plate \7? > d .
| : ' | 6
I |
.
L : / g [
L 1 4y =,
\ P
Standard < 5 |
Hook
4-No. 3 ties @ 214" oC.
and No. 3 framing bar
as shown
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Example 15.3—Beam Ledge Design

fe = 5000 psi (normal weight)

fy = 60,000 psi

—n -‘--1ﬂ
1 C
—_
w
3 Yo .
: l Stems @ 48" Q.C.
‘ Nyc b none loccted
'X'_ g -7" [ negr end of beom
x| ' o b=5", pad 4-1/2"x4-1/2"
™ o| =
— %\
e N

\Eﬂecﬂve width

The L-beam shown is to support a double-tee parking deck spanning 64 ft. Maximum service loads per stem are:
DL = 11.1 kips; LL = 6.4 kips; total load = 17.5 kips. The loads may occur at any location on the L-beam ledge
except near beam ends. The stems of the double-tees rest on 4.5 in. x 4.5 in. x 1/4 in, neoprene bearing pads
(1000 psi maximum service load).

Design in accordance with the code provisions for brackets and corbels may reguire a wider ledge than the 6 in.
shown. To maintain the 6-in. width, one of the following may be necessary: (1} Use of a higher strength bearing
pad (up to 2000 psi); or (2) Anchoring primary ledge reinforcement Ag. to an armor angle,

This example will be based on the 6-in. ledge with 4.5-in.-square bearing pad. At the end of the example an
alternative design will be shown.

Note: This example illustrates design to prevent potential local failure modes. In addition, ledge beams should
be designed for global effects, not considered in this exampie. For more details see References 15.2 to 15.6.

Code
Calculations and Discussion Reference

i. Check 4.5 x 4.5 in. bearing pad size (1000 psi maximum service load).
Capacity = 45 x 45 x 1.0 = 203 kips > 175kips OK.

2. Determine shear spans and effective widths for both shear and flexure [Ref. 15.3 to 15.5].
The reaction is considered at outer third point of the bearing pad.

a.  For shear friction

2
ay = 4.5[5] +1.0 = 4in.

Effective width = W +4a, = 45+4(4)=20.51n.
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Code

Vy € 40Jf7 (W +2L +2dg) d¢
W=1L=45in
di = 10 in. (assumed)

49.JEL (BW +20) de = 4 X 0.75 x /5000 [(3 x 4.5) + (2 x 10)] x 10/1000

= 71.1 kips > 23.6 kips

i5-17

Example 15.3 (cont’d) Calculations and Discussion Reference
b. For flexure, critical section is at center of the hanger reinforcement (Ay)
Assurne 1 in. cover and No. 4 bar stirrups
ag =4+ 1+ 025 =525in.
Effective width = W + 5ar = 4.5 + 5(5.25) = 30.75 in.
3. Check concrete bearing strength.
Vy = 1.2(11.1) + 1.6(6.4) = 23.6 kips Eq. (9-2)
6Py = G(0B5fLAY) 10.17.1
d = 0.65 9.3.24
OPup = (.65 (0.85 X 5 x 4.5 x 4.5) = 55.9kips > 23.6kips O.K.
4. Check effective ledge section for maximum nominal shear-transfer strength Vi, 11.9.3.2.1
For f;, = 5000 psi: Vp(max) = 800byd, where by, = (W +4a,) = 20.51in.
Vv, = 800 (20.5) (10.75) — 1763 kips
1000
6 =075 11.9.3.1
OVp = 0.75(176.3) = 1322 kips > 23.6kips O.K.
5. Determine shear-friction reinforcement Ayt 11.9.3.2
= ¢\f/:ll = 0‘752(:2;) i 0.37 in.Z/per effective width of 20.5 in. 11.7.4.1
where W =14 11.7.4.3
6. Check for punching shear (Eq. (3))



Code
Example 15.3 (cont’d) Calculations and Discussion Reference
7. Determine reinforcement to resist direct tension Ay. Unless special provisions are made to 11.9.3.4
reduce direct tension, Ny should be taken not less than 0.2V}, to account for unexpected
torces due to restrained long-time deformation of the supported member, or other causes.
When the beam ledge is designed to resist specific horizontal forces, the bearing plate should
be welded to the tension reinforcement Age..
Ny = 0.2V, = 0.2 {23.6) = 4.7 kips
Ay = No _ _47 _ 0.10 in.%/per effective width of 30.75 in. (0.003 in.2/in.)
"7, 0750y o Ee 2 A AR TR
8. Determine flexural reinforcement Ag.
My = Vyar + Ny(h-d) = 23.6(5.25) + 4.7(12 - 10.75) = 129.8 in.-kips
Find A¢ using conventional flexural design methods. For beam ledges, Ref. 15.5 11.8.3.3
recommends to use jyd = 0.8d.
¢ =075 11.9.3.1
129.8
Ap = = 0.34 in.%/per 30.75 in. width = 0.011 in.2/in.
F= 075 (60) (0.8 x 10.75) P 1
9. Determine primary tension reinforcement A 11.8.3.5
2 2 P . . T 7
3 Ayt = 3 (.37 = 0.251in.</per 20.5 in. width = 0.012 in.%/in. 3
Ay = (%)Avf +Ap = 0.012 + 0.003 =0.015 in.%/in. (governs)
Age = Ar + Ag = 0.011 +0.003 = 0.014 in.%in.
Check Ageminy = 0.04 (f—c} d per in, width 11.9.5
Y
= 0.04 (E}%) 10.75 = 0.036in.2/in. > 0.015 in.2/in.
For typical shallow ledge members, minimum Age by 11.9.5 will almost always govern.
10. Determine shear reinforcernent Ay,.
Ap = 0.5 (Agc - Ap) = 0.5 (0.036 - 0.003) = 0.017 in.%/in. 11.9.4
15-18




Exampie 15.3 (cont’d) Calculations and Discussion

Code
Reference

11.

12.

13.

Determine final size and spacing of ledge reinforcement.
For Age = 0.036 in.2fin.:
Try No. 5 bars (A = 0.31in.2)

031
Smax = 0036

Use No.5 @ 8 in.

= B.6in

Ay, = 0.017 in.2/in. For ease of constructability, provide reinforcement Ay, at same spacing
of 8 in.

Provide No. 4 (A = 0.2 in.2) @ 8 in. within 2/3d adjacent 10 Ag.
Check required area of hanger reinforcement.
For strength (Eq. {(4)):

— vll s
of, S

Y

Fors=8in. and S =48 in,

23.6 x 8§
Ay = —2 "% _ 009in2
v 075 % 60 x 48 - 00n

For serviceability (Eq. (5)):

A v X >
Y 0.5f, = (W + 3a,)

V =111+64 = 17.5kips
W+3a, = 45+ (3 x4) = 165in.

17.5 8

= =2 w2 - 028in?
VT 05%60 165 in.” (governs)

No. 5 hanger bars @ 8 in, are required

Sufficient stirrups for combined shear and torsion must be provided for global effects in the
ledge beam. (See Refs. 15.5 and 15.6)

Reinforcement Details

In accordance with 11.9.7, bearing area (4.5 in. pad) must not extend beyond straight por-
tion of beam ledge reinforcement, nor beyond inside edge of transverse anchor bar. Witha
45 in. bearing pad, this requires that the width of ledge be increased to 9 in. as shown
below. Alternately, a 6 in. ledge with a 3 in. medium strength pad (1500 psi) and the ledge
reinforcement welded (o an armor angle would satisfy the intent of 11.9.7.
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Example 15.3 (cont’d) Calculations and Discussion Reference

End of Beaﬁné as
\[\ Described in 11.9.7

Hanger Bar
g

a5

L LT

Steel Guard f
—No. 5 @ 8" Angle
{
No. 4 @ 8" No.4 @ 8"
No.3
N ) Framing Bar

Bar continued
[Ref. 15.3 - 15.5]

9 in. Ledge Detail 6in. Ledge Detail
(Altemate)
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16

Shear in Slabs

UPDATE FOR THE '05 CODE

The expression ZJf_'c is replaced by q{z\ﬁ J in 11.12.6.2 to correct a typographical error.

11.12 SPECIAL PROVISIONS FOR SLABS AND FOOTINGS

The provisions of 11.12 must be satisfied for shear design in slabs and footings. Included are requirements for
critical shear sections, nominal shear strength of concrete, and shear reinforcement.

11121 Critical Shear Section

In slabs and footing, shear strength in the vicinity of columns, concentrated loads, or reactions is governed by the
more severe of two conditions:

» Wide-beam action, or one-way shear, as evaluated by provisions 11.1 through 11.5.
« Two-way action, as evaluated by 11.12.2 through 11.12.6.

Analysis for wide-beam action considers the slab to act as a wide beam spanning between columns. The critical
section extends in a plane across the entire width of the slab and is taken at a distance d from the face of the
support (11.12.1.1); see Fig. 16-1. In this case, the provisions of 11.1 through 11.5 must be satisfied. Except for
long, narrow slabs, this type of shear is seldom a critical factor in design, as the shear force is usually well below
the shear capacity of the concrete. However, it must be checked to ensure that shear strength is not exceeded.

Tributary Area

| : / : '3 *IﬂC‘E panels

. Critica
section

3

Fig. 16-1 Tributary Area and Critical Section for Wide-Beam Shear



Two-way or “punching” shear is generally the more critical of the two types of shear in slab systems supported
directly on columns. Depending on the location of the column, concentrated load, or reaction, failure can occur
along two, three, or four sides of a truncated cone or pyramid. The perimeter of the critical section b is located
in such a manner that it is a minimum, but need not approach closer than a distance d / 2 from edges or comers
of columns, concentrated loads, or reactions, or from changes in slab thickness such as edges of capitals or drop
panels (11.12.1.2); see Fig. 16-2. In this case the provisions of 11.12.2 through 11.12.6 must be satisfied. It is
important to note that it is permissable to use a rectangular perimeter b, to define the critical section for square
or rectangular columns, concentrated loads, or reaction areas (11.12.1.3).

/Tributary Area

panels
s

Critical
Sections, by

| | \Drop Panel

|
1
i

\ ] .
Liﬁs..__' fdz | hﬂ_g 3 +d, E
! :
!

e
I_ 3 +dy '
(b} Drop Panel ~ !
Critical Section by, - “T —-:\/<Shear AReinforcement
' - — N deyp)
”~ —

i

- g

Ve Grilicai Sections, by,
N—=

{c) Column Capital ¢ (d) Bar or Wire Reinforcement

0TSt -e) | o
H

a2 {miny  # N Crilical Section b,
~

% Shaarhead
/ \ /
Z [ . 1

N

(e) Shearhead Reinforcement

Fig. 16-2 Tributary Areas and Critical Sections for Two-Way Shear
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11.12.2  Shear Strength Requirement for Two-Way Action

In general, the factored shear force Vy at the critical shear section shall be less than or equal to the shear strength
$Vp:

oV, 2V, E£q. (11-1)
where the nominal shear strength Vy is:
V=V, + Vg Eq. (11-2)

and

V. = nominal shear strength provided by concrete, computed in accordance with 11.12.2.1 if shear
reinforcement is not used or 11.12.3.1 if shear reinforcement is used.

Vs = nominal shear strength provided by reinforcement, if required, computed in accordance with
11.12.3 if bars, wires, or stirrups are used, or 11.12.4 if shearheads are used. Where moment is
transferred between the slab and the column in addition to direct shear, 11.12.6 shall apply.

11.12.2.1 Nominal shear strength provided by concrete V, for slabs without shear
reinforcement

The shear stress provided by concrete at a section v¢ is a function of the concrete compressive stress f,, and is

limited to 4JE for square columns. The nominal shear strength provided by concrete Ve is obtained by multi-
plying v¢ by the area of concrete section resisting shear transfer, which is equal to the perimeter of the critical
shear section b, multiplied by the effective depth of the slab d:

V, = 44ffibyd Eq. (11-35)

Tests have indicated that the value of 4Jf_é is unconservative when the ratio of the long and short sides of a
rectangular column or loaded area B is larger than 2.0. In such cases, the shear stress on the critical section

varies as shown in Fig. 16-3. Equation (11-33) accounts for the effect of B on the concrete shear strength:

4
Vv, =(2+E}/ffb0d Eq. (11-33)

From Fig. 16-3, it can be seen that for § < 2.0 (i.e., square or nearly square column or loaded area), two-way

shear action governs, and the maximum concrete shear stress v, is 4,ff; . For values of [} value larger than 2.0,

the concrete stress decreases linearly to a minimum 2Jf7 . which is equivalent to shear stress for one-way shear.
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. /HTwo-way action
/ Vs =(2+4/ Byflc bod
3 7
Vc
Jbed
2 Wide-beam action:
B=C1/ Co
1 G2
¢4
| 1 | { |
0 0.2 04 05 08 0.8 1.0
1/8

Fig. 16-3 Effect of B on Concrete Shear Strength

Other tests have indicated that v, decreases as the ratio by/d increases. Equation (11-34) accounts for the effect
of by/d on the concrete shear strength:

vcz(“—sd + ZJJf:'bod
b,

Figure 16-4 illustrates the effect of by/d for interior, edge, and corner columns, where o, equals 40, 30, and 20,

respectively. For an interior column with b, /d < 2.0, the maximum permissible shear stress is 4\/E ; see Fig.

Eq. (11-34)

16-4. Once b, /d > 2.0, the shear stress decreases linearly to 2@ at by/d equal to infinity.
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Fig. 16-4 Effect of b, [ d on Concrete Shear Strength

Note that reference to interior, edge, and comer column does not suggest column location in a building, but rather
refers to the number of sides of the critical section available to resist the shear stress. For example, a column that
is located in the interior of a building, with one side at the edge of an opening, shall be evaluated as an edge column.

The concrete nominal shear strength for two-way shear action of slabs without shear reinforcement is the least of
Eqs. (11-33), (11-34), and (11-35) (11.12.2.1). Note that if lightweight concrete is used, 11.2 shall apply.

11.12.3 Shear Strength Provided by Bars, Wires, and Single or Multiple-Leg Stirrups

The use of bars, wires, or single or multiple-leg stirrups as shear reinforcement in slabs is permitted provided
that the effective depth of the slab is greater than or equal to 6 inches, but not less than 16 times the shear
reinforcement bar diameter (11.12.3). Suggested rebar shear reinforcement consist of properly anchored single-
leg, multiple-leg, or closed stirrups that are engaging longitudinal reinforcement at both the top and bottom of
the stab (11.12.3.4); see Fig. R11.12.3 (a), (b}, {c).

With the use of shear reinforcement, the nominal shear strength provided by concrete V¢ shall not be taken
greater than 2Jf§b0d (11.12.3.1), and nominal shear strength Vy, is limited to 6Jf_;bod (11.12.3.2). Thus,V must

not be greater than 4Jf_c’bod.
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The area of shear reinforcement A is computed from Eq. (11-15), and is equal to the cross-sectional area of all

legs of reinforcement on one peripheral line that is geometrically similar to the perimeter of the column section
(11.12.3.1):

A=Y Eq. (11-15)

The spacing limits of 11.12.3.3 correspond to stab shear reinforcement details that have been shown to be
effective. These limits are as follows (see Fig. 16-5):

<2d
- V, <02,/t:b,d
7 where b, is perimeter of critical
s ~ section ai d/2 from closed stirrups
d/2
7/ N drz
P = ~
s
, [ —— ;HH
| et I locate first line of stirrups
I B S I @ d/2 from face of column
L B IR -—J—~closed stirrups
N L 11 'I;I: 7
A s s < d/2(yp)
N
N Ve
N . V, <02,/Kbod+ 0Af,d/s
N — < 96,/ bod

where by is perimeter of critical
Ay, = Total area of shear reinforcement section at d/2 from face of column

on the four sides of the interior
column support.

(a) Interior Column locate first line of stimups @ d/f2
from face of column

d/2 )
—-‘dii-— ﬁ—s <d/2 (typ.)
I T T I : - .. - : \ I
I | |
L 2 ‘ J — ! ]
\ | L] / . _—
N —\b 5 < d/2 fyp.) /%L
o s 2
< bo/\ / AN / “bo -~
\ /7 7
a2 TN \ d2 i \closed stirrups
<24 closed stirrups <2d
(b) Edge Column {c) Corner Column

Fig. 18-5 Design and Detailing Criteria for Slabs with Stirups
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The first line of stirrups surrounding the column shall be placed at distance r:ot exceeding d/2 from the

column face.
The spacing between adjacent legs in the first line of shear reinforcement shall not exceed 2d.
The spacing between successive lines of shear reinforcement that surround the column shall not exceed d/ 2.

The shear reinforcement can be terminated when V, < ¢2J§bod (1 1.12.3. 1).

Proper anchorage of the shear reinforcement is achieved by satisfying the provisions of 12.13 (11.12.3.4). Refer
to Fig. R11.12.3 and Part 4 for additional details on stirrup anchorage. It should be noted that anchorage require-
ments of 12.13 may be difficult for slabs thinner than 10 inches. Application of shear reinforcement design using
bars or stirrups is illustrated in Example 16.3.

Where moment transfer is significant between the column and the slab, it is recommended to use ctosed stirrups
in a pattern as symmetrical as possible around the column (R11.12.3).

11.124 Shear Strength Provided by Shearheads

The provisions of 11.12.4 permit the use of structural steel sections such as [- or channel-shaped sections (shearheads)
as shear reinforcement in slabs, provided the following criteria are satisfied:

7.

Each arm of the shearhead shall be welded to an identical perpendicular arm with full penetration welds
and each arm must be continuous within the column section (11.12.4.1); see Fig. 16-6 (a).

Shearhead depth shall not exceed 70 times the web thickness of the steel shape (11.12.4.2); see Fig. 16-6 (b).
Ends of each shearhead arm is permitted to be cut at angles not less than 30 deg with the horizontal,
provided the tapered section is adequate to resist the shear force at that location (11.12.4.3); see Fig. 16-6 (b).
All compression flanges of steel shapes shall be located within 0.3d of compression surface of slab,
which in the case of direct shear, is the distance measured from the bottom of the slab (1. 12.4.4); see
Fig. 16-6 (b}.

The ratio 0., of the flexural stiffness of the steel shape to surrounding composile cracked slab section of
width ¢, + d shall not be less than 0.15 (11.12.4.5); see Fig. 16-6 (c).

The required plastic moment strength M is computed from the following equation (11.12.4.6):

Vu
oM, = 5;l-[h\, + o, (€, - 0.5¢))] Eq. (11-37)

where:

M= plastic moment strength for each shearhead arm required to ensure that the ultimate
shear is attained as the moment strength of the shearhead is reached.

¢ = strength reduction factor for tension-controlled members, equal to 0.9 per 9.3.2.3.

n= number of shearhead arms; see Fig. R11.12.4.7.

¢, = minimum required length of shearhead arm per 11.12.4.7 and 11.12.4.8; see
Fig. R11.12.4.7.

h, = depth of shearhead cross-section; see Fig. 16-6 (b).

The critical section for shear shall be perpendicular to the plane of the slab and shall cross each shearhead
arm at three-quarters of the distance(é‘ «—0.5c, )from the column face to the end of the shearhead arm.
The critical section shall be located per 11.12.1.2(a) (11.12.4.7); see Fig. R11.12.4.7.
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Fig. 16-6 Design and Detailing Criteria for Slabs with Shearhead Reinforcement
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8. The nominal shear strength V;, shall be less than or equai to 4\/Ebod on the crifical section defined by
11.12.4.7, and 7\[Eb0d at d / 2 distance from the column face (11.12.4.8); see Fig. 16-6 (a).

9. Section 11.12.4.9 permits the shearheads to contribute in resisting the slab design moment in the column
strip. The moment resistance M, contributed to each column strip shall be the minimum of:

b.
c.
d.

o,V '
¢ 2vn u(¢,—0.5¢,) Eq.(11-38)

0.30M, of the total factored moment in each column strip
the change in column strip moment over the length ¢y
the value of Mpcomputed by Eq. (11-37).

When direct shear and moment are transferred between stab and column, the provisions of 11.12.6 must be
satisfied in addition to the above criteria. In slabs with shearheads, integrity steel shall be provided in accordance
with 13.3.8.6. Application on the design of shearheads as shear reinforcement is itlustrated in Example 16.3.

Other Type of Shear Reinforcement

Slab shear reinforcement consisting of vertical bars mechanically anchored at each end by a plate or a head
capable of developing the yield strength of the bars have been used successfully (R11.12.3); see Fig. 16-7. This
type of shear reinforcement for slabs can be advantageous when considering their ease of installation and the
cost of placement, compared to other types of slab shear reinforcement. Extensive tests, methods of design, and
worked-out design examples are presented in Refs. 16.1 through 16.4.

E
o
O
O
<

o —— - — -

rd
,
,
4
~ .
. /’ Critical
rs
’

shear penmeter

Fig. 16-7 Shear Reinforcement by Headed Studs
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11.125 Effect of Openings in Slabs on Shear Strength

The effect of openings in slabs on concrete shear strength shall be considered when the opening is located: (1)
anywhere within a column strip of a flat slab system and (2) within 10 times the slab thickness from a concen-
trated load or reaction area. Slab opening effect is evaluated by reducing the perimeter of the critical section b,
by a length equal to the projection of the opening enclosed by two-lines extending from the centroid of the
column and tangent to the opening; see Fig 16-8 {(a). For slabs with shear reinforcement, the ineffective portion
of the perimeter b, is one-half of that without shear reinforcement; see Fig. 16-8 (b). The one-half factor is
interpreted to apply equally to shearhead reinforcement and bar or wire reinforcement as well. Effect of opening
in stabs on flexural strength is discussed in Part 18.

I / Ineflective portion ——
/ / of perimeter b, - N
a L o I P
& i ' LA s
c | g s 50% Inefiective
E r L7 ] |'/ = N
[=] I 4
Q JE—— T2
| ;! L | I )
_________ ~ - =7 g
~ s
_ _ N s
~ ’
Column Strip N 7
AL
{a) Slab with Drop Panel {b) Slab with Bar Reinforcement

Fig. 16-8 Effect of Openings in Slabs on Shear Strength

11.12.6 Moment Transfer at Slab-Column Connections

For various loading conditions, unbalanced moment M, can occur at the slab-column connections. For slabs
without beams between supports, the transfer of unbalanced moment is one of the most critical design conditions
for two-way slab systems. Shear strength at an exterior slab-column connection (without spandrel beam) is
especially critical, becanse the total exterior negative moment must be transferred to the column, which is in
addition to the direct shear due to gravity loads; see Fig. 16-9, The designer should not take this aspect of two-
way slab design lightly. Two-way slab systems usually are fairly “forgiving” in the event of an error in the
amount and or distribution of flexural reinforcement; however, little or no forgiveness is to be expected if shear
strength provisions are not fully satisfied.

Note that the provisions of 11.12.6 (or 13.5.3) do not apply to slab systems with beams framing into the column
support. When beams are present, load transfer from the slab through the beams to the columns is considerably
less critical. Shear strength in slab systems with beams is covered in 13.6.8.
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Fig. 16-9 Direct Shear and Moment Transfer

11.12.6.1 Distribution of Unbalanced Moment

The code specifies that the unbalanced moment at a slab-column connection must be transferred from the slab
(without bearns) to the column by eccentricity of shear in accordance with 11.12.6 and by flexure in accordance
with 13.5.3 (11.12.6.1). Studies (Ref. 16.7) of moment transfer between slabs and square columns found that
0.6M,, is transferred by flexure across the perimeter of the critical section b, defined by 11.12.1.2, and 0.4M, by
eccentricity of shear about the centroid of the critical section. For a rectangular column, the portion of moment
transferred by flexure y M, increases as the dimension of the column that is parallel to the applied moment
increases. The fraction of unbalanced moment transferred by flexure v, is:

1

= Eq. (13-1
Ye D q. (13-1)
1+ = | [
3/\b,
and the fraction of unbalanced moment transferred by eccentricity of shear is:
Eq. (11-39)

Yy =1 -7

where bjand by are the dimensions of the perimeter of the critical section, with by parallel to the direction of
analysis; see Fig. 16-10. The relationship of the parameters presented into Egs. (13-1) and (11-39) is graphically
illustrated in Fig. 16-11. Modification or adjustment of y and thus vy, is permitted in accordance with 13.5.3.3 for
any two-way slab system, except for prestressed slabs. The following modifications are applicable, provided that the
reinforcement ratio in the slab within the effective width defined in 13.5.3.2 does not exceed 0.375p,,:

» For unbalanced moments about an axis parallel to the slab edge at extertor supports (i.e., bending perpen-
dicular to the edge), it is permitted to take y; = 1.0 provided that V, <0.75¢V_ at an edge column or

V, £0.5¢V, at a corner column.
» For unbalanced moments at interior supports and for unbalanced moments about an axis transverse to the
edge of exterior supports (i.e., bending parallel to the edge), it is permitted to increase vy, by up to 25%,

provided that V, <0.49V,.
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The unbalanced moment iransferred by eccentricity of shear is y M ,where My, is the unbalanced moment at
the centroid of the critical section. The unbalanced moment M, at an exterior support of an end span will gener-
ally not be computed at the centroid of the critical transfer section in the frame analysis. When the Direct Design
Method of Chapter 13 is utilized, moments are computed at the face of the support. Considering the approximate
nature of the procedure to evaluate the stress distribution due to moment-shear transfer, it seems unwarranted to
consider a change in moment to the transfer centroid; use of the moment values from frame analysis (centerline
of support) or from 13.6.3.3 (face of support) is accurate encugh.

Unbalanced moment transfer between an edge column and a slab without edge beams requires special consider-
ation when slabs are analyzed for gravity loads using the moment coefficients of the Direct Design Method. In
this case, unbalanced moment M, must be set equal to 0.3M,, (13.6.3.6), where M, is the total factored static
moment in the span. Therefore, the fraction of unbalanced moment transferred by shearis y,M, = 7,{0.3M,).

See Part 19 for further discussion of that special shear strength requirement and its application in Example 19.1.
If the Equivalent Frame Method is used, the unbalanced moment is equal to the computed frame moment.

11.12.6.2 Shear Stresses and Strength Computation

Assuming that shear stress resulting from moment transfer by eccentricity of shear varies linearly about the
centroid of the critical section defined in 11.12.1.2, the factored shear stresses at the faces of the critical section

due to the direct shear Vy and the unbalanced moment transferred by eccentricity of shear y M are (see
Fig. 16-12, and R11.12.6.2):

\y Vu
—
/r~\ TVMU \ ’YVMU
r
siab—" |
Edge
9 T T T I
| el
: Y Y < i : S <
|
! ] |
I N BN 3 P R . 3
b4 - by
4 4
C'_!_c c | ¢ | ¢c=¢
»le - i
A
V2 Vuz
v
ut Vai
(a) Edge Column (b} interior Column

Fig. 16-12 Shear Stress Distribution due to Moment-Shear Transfer af Slab-Column Connection
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TyMye
z—+
TuER T Eg. (1)
V, M,¢
vuz=;~“————7“ T Eq. (2)
[

where: A = area of concrete section resisting shear transfer, equal to the perimeter by multiplied by the
effective depth d
J = property of critical section analogous to polar moment of inertia of segments forming area A...

¢ and ¢’ = distances from centroidal axis of critical section to the perimeter of the critical section in
the direction of analysis

Expressions for A_,c.c’,J /c,and J /¢, are contained in Fig. 16-13 for rectangular columns and Fig. 16-14 for
circular interior columns.

Where biaxial moment transfer occurs, research has shown that the method for evaluating shear stresses due to
moment transfer between slabs and column in R.11.12.6.2 is still applicable (Ref. 16.8). There is no need to
superimpose the shear stresses due to moments transfer in two directions.

The maximum shear stress v,; computed from Eq. (1) shall not exceed ¢v , where ¢v , is determined from the
following (11.12.6.2):

a. For slabs without shear reinforcement: ¢v, = ¢v,, where v, is the minimum of:

oV, (2 + —JJF’ Eq. (11-33)

v, = 4{2 + -bm]JE Eq. (11-34)

Ove =944t Eq. (11-35)
b. For slabs with shear reinforcement other than shearheads, ¢v is computed from (11.12.3):

’ AVf)‘ #
OV, =4 24f; s < 964f; Egs. (11-15), (11.12.3.1}, and (11.12.3.2)
0

where A is the total area of shear reinforcement provided on the column sides and b is the perim-
eter of the critical section located at d / 2 distance away from the column perimeter, as defined by

11.12.1.2 (a). Due to the variation in shear stresses, as illustrated in Fig. 16-12, the computed area of

shear reinforcement, if required, may be different from one column side to the other. The required
area of shear reinforcement due to shear stress v | atits respective column side is:

{c +d)s
)“"“"-“quy Eq (3)
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where (c + d) is an effective “beam” widthand v = ZJE . However, R11.12.3 recommends symmetri-
cal placement if shear reinforcement on all column sides. Thus, with symmetrical shear reinforcement
assumed on all sides of the column, the required area A may be computed from:

b,$
AV:(Vul_é\rC)E Egq. (4)

where A is the total area of required shear reinforcement to be extended from the sides of the column,
and b_ is the perimeter of the critical section located at d/2 from the column perimeter. With symmetri-
cal reinforcement on all column sides, the reinforcement extending from the column sides with
lesscomputed shear stress provides torsional resistance in the strip of slab perpendicular to the direc-
tion of analysis.

For slabs with shearheads as shear reinforcement, ¢v,, is computed from:

ovo= 04T 2 vy 11.12.6.3
V, M. v

Vu=1gt Y"J =< ga4E; Eq. (1)
Q

where b, is the perimeter of the critical section defined in 11.12.4.7, ¢ and J are section properties of the
critical section located at d /2 from the column perimeter (11.12.6.3), V _ is the direct shear force acting

on the critical section defined in 11.12.4.7, and -y, M, is the unbalanced moment transferred by eccen-

tricity of shear acting about the centroid of the critical section defined in 11.12.1.2(a). Note that this
seemingly inconsistent summation of shear stresses occurring at two different critical shear sections is
conservative and justified by tests (see R11.12.6.3). At the critical section located d / 2 from the column

perimeter, v shall not exceed (j)?Jf_c’ (11.12.4.8); see Fig. 16-5.
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Fig. 16-13 Section Properties for Shear Stress Computations — Rectangular Columns
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Example 16.1—Shear Strength of Slab at Column Support

Determine two-way action shear strength at an interior column support of a flat plate slab system for the following

design conditions.

Column dimensions =48 in. X §in.

48"

b, _ 138

= =2 = =2 =212
Po d 6.5

oV, =0.75 x 138 x 6.5/1,000 = 165.4 kips

16-18

I = " T '
Slab effective depth d = 6.5 in. | e o 41 s
d + - ot - I
—(typ.) |
Specified concrete strength f7 =4,000psi 2 ‘I— L
Critical section
{punching shear)
Code
Calculations and Discussion Reference
1. Two-way action shear {punching shear) without shear reinforcement;
Vu £ ¢V, Eq. (11-1)
< oV, 11.12.2
2. Effect of loaded area aspect ratio f.:
41 =
OV, = q;[z + E] f¢ byd £q. (11-33)
48
where f = — =6 11.12.2.1
bo = 2(48+65+8+6.5) = 138in. 11.12.1.2
¢ = 075 9323
OV, =0.75 x 138 X 6.5/1,000 = 113.5 kips
3. Effect of perimeter arca aspect ratio f§,:
-_ as ’
OVe = ¢ 2+ = | ¢ bod Eq. (11-34)
Bo
where o, = 40 for interior column support 11.12.2.1




Code
Example 16.1 (cont’d) Calculations and Discussion Reference

4. FExcluding effect of § and B

OV, = 04T bod Eq. (11-35
=0.75% 4% /4,000 x 138 X 6.5/1,000 = 170.2 kips

5. The shear strength ¢V, is the smallest of the values computed above, i.e.,
¢V, = 113.5 kips.
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Example 16.2—Shear Strength for Non-Rectangular Support

For the L-shaped interior column support shown, check punching shear strength for a factored shear force of Vu
= 125 kips. Use f; = 4,000 psi. Effective slab depth=15.51in.

Critical section
(punchlng shear)

A g\ 7ZL f Effective loaded area

8'1

V
,-‘:_--".r 9

Code
Calculations and Discussion Reference

L.

For shapes other than rectangular, R11.12.2.1 recommends that (§ be taken as the ratio of R11.12.2.1

the longest overall dimension of the effective loaded area a to the largest overall dimension
of the effective loaded area b, measured perpendicular to a:

-2 =2
b 25
For the critical section shown, b, = 141 in. 11.12.1.2

Scaled dimensions of the drawings are used, and should be accurate enough
Two-way action shear (punching shear) without shear reinforcement:
< ¢V, Eq. (11-1)
< oV, 11.12.2
where the nominal shear strength V, without shear reinforcement is the lesser of values

given by Eqgs. (11-33) and (11-34), but not greater than 4./f! b,d:

4
v, = [2 + EJ £2 byd Eq. (11-33)

= (2+£E 4,000 x 141 5.5/1,000= 188.9 kips

vV, (2 + ) fe bed Eq. (11-34)
Bo
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Code

Example 16.2 (cont’d) Calculations and Discussion Reference
where o, = 40 for interior column support 11.12.2.1
b, 141
=0 = — =256
o d 55
40 .
V.= 2+E€ /4,000 x141x5.5/1,000=174.7 Kips
V. =4.Jfb,d Eq. (11-35)

= 4+/4,000 x141x 5.5 /1,000=196.2 kips
OV, = 0.75(174.7) = 131 kips

Vu = 125kips < V.= 131 kips OK.
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Example 16.3—Shear Strength of Slab with Shear Reinforcement

Consider an interior panel of a flat plate slab system sepported by a 12-in. square column. Panel size £) = £, =
21 ft. Determine shear strength of slab at column support, and if not adequate, increase the shear strength by
shear reinforcement. Overall slab thickness h=7.51in. (d = 6in.).

£, = 4,000 psi

fy = 60,000 psi (bar reinforcement)

fy = 36,000 psi (structural steel)

Superimposed factored load = 160 psf

Colurnn strip negative moment My = 173 ft-kips

Code
Calculations and Discussion Reference
1. Wide-beam action shear and two-way action shear (punching shear) without shear 11.12.2
reinforcement:
Vi £ oV, Eq. (11-1)
< 0V, 11.12.2

a.  Since there are no shear forces at the center lines of adjacent panels, tributary areas and critical
secttons for slab shear are as shown below.

r
I

Critical section
for two-way
action

2.0
~

9.5 d=8"
|

i k—— Critical section |
i for beam action

— — - g
' 21' - o*

- ¢ -
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Code

Example 16.3 (cont’d) Calculations and Discussion Reference
For 7.5-in, slab, factored dead load g, = 1.2x -gx 150 = 113 psf g21
Qu = 113+ 160 = 273 psf

a. Wide-Beam Action Shear.
Investigation of wide-beam action shear strength is made at the critical section 11.1.3.1
at a distance d from face of column support.
Vu = 0.273 (9.5 x 21) = 54.5 kips
V, = 24ft7b,,d=24/4,000 (21x21)x6/1,000 =191.3 kips Eq. (11-3)
¢=0.75 9323
oV, = 0.75 (191.3) = 143.5kips >V =545kips O.K.
Wide-beam action will rarely control the shear strength of two-way slab systems.
b. Two-Way Action Shear.
Investigation of two-way action shear strength is made at the critical section bo 11.12.1.2(a)
located at d/2 from the column perimeter. Total factored shear force to be transferred
from slab to column:
Vo = 0.273 (212-1.52) = 119.8 kips
Shear strength V¢ without shear reinforcement: 11.12.2.1
bo = 4 (18} = 72in. 11.12.1.2(a)
12

p = 2 =10<?2
|30=b7"=7—62=12<20
Ve = 44ff2b,d=44/4,000 x 72 x 6/1,000 = 109.3 kips
¢=0.75 9.3.2.3

¢V, = 0.75 (109.3) = 82kips < V,=119.8 kips N.G.

Shear strength of slab is not adequate to transfer the factored shear force V= 119.8 kips
from slab to column support. Shear strength may be increased by:

i.  increasing concrete strength f;
ii.  increasing slab thickness at column support, i.e., using a drop panel
iii. providing shear reinforcement (bars, wires, or steel I- or channel-shapes)

The following parts of the example will address all methods to increase shear strength.
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Example 16.3 {(cont’d) Calculations and Discussion Reference
2. Increase shear strength by increasing strength of slab concrete:
Vo € 6V, : Eq. (11-1)

119,800 < 0.75 (44 x 72 x 6)
Solving, f; = 8,545 psi

3. Increase shear strength by increasing stab thickness at column support with drop panel:

Provide drop panei in accordance with 13.2.5 (see Fig. 18-18). Minimum overall slab
thickness at drop panel = 1.25 (7.5) = 9.375-in. Try a 9.75 in. slab thickness (2.25-in.
projection below slab*; d = 8.25 in.). Minimum distance from centerline of column to
edge of drop panel = 21/6 = 3.5 ft. Try 7 X 7 ft drop panel.

|
I
i

|
Tk
£/6 {min.) i 46 (min.)
I T 1
Drop Panel Section

-r- - - _ - - - - 1.
1 )
| 20.25" |
1 ’ ]
1 a2 = 4.125" |
! ! 1
) 1
| | e
i | ™
t I
{ 1
| t
I I
| I
. +1

a. Investigate shear strength at critical section b located at df2 from column perimeter.

Total factored shear force to be transferred —

* See Chapter 9 (Design Considerations for Economical Formwork) in Ref. 16.6.
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Example 16.3 (cont’d) Calculations and Discussion Reference
. " 2.25
For 2.25-in. drop panel projection, q;,, = 1.2x—12—x150 =34 psf
Vo = 0273 (212-1.692) +0.034 (72-1.692) = 119.6 + 1.6 = 121.2 kips
bo = 4(12 +8.25) = 81 in. 11.12.1.2{a}
p=10<2
_ by, _ 81
Bo = =555 =98<20
OV, = ¢4 Jf byd Eq. (11-35)
= 0.75 X 44/4,000 x 81 x 825 > V, = 1212 kips O.K.
b. Investigate shear strength at critical section bo located at d/2 from edge of drop panel.
Total factored shear force to be transferred —
Vo = 0273 (212-7.52) = 105.0 kips
o = 4 (B4+6) = 360in. 11.12.1.2(b}
-8 0<2 Eq. (11-35
B - 24 =l < q. ( - )
b, 360
=2 =-"— =60>20
o; | 1= 403 >
OV, =92 + B_ fbyd = 2+5 f.b,d = $2.67/f’bd Eq. (11-36)

o

={.75% 2.67\/4,000 x360x6/1,000=273.2 kips > V, =105.0 kips O.K.

Note the significant decrease in potential shear strength at edge of drop panel due to

large B,.

A7 X7 ft drop panel with a 2.25-in. projection below the slab will provide adequate

shear strength for the superimposed factored loads of 160 psf.
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Example 16.3 (cont’d) Calculations and Discussion Reference

4. Increase shear strength by bar reinforcement (see Figs. R11.12.3(a) and 16-5):
a. Check effective depth d 11.12.3

Assuming No. 3 stirrups (dp = 0.375 in.),

] 6in. O.K.
d=6in2 .
16 x 0.375 = 6in. OK.
b. Check maximum shear strength permitted with bars. 11.12.3.2
Vu £ 9V, Eq. (11-1)

8V, = 9{6F2b,d)=0.75(6/2,000 x 72 6)/1,000=123.0 kips
Vo = 0273 (212-152) = 119.8kips < ¢V, = 123.0kips OK.
c.  Determine shear strength provided by concrete with bar shear reinforcement. 11.12.3.1
V, = 2,/f7b,d = 24/4,000 x 72 x 6 /1,000 = 54.6 kips
OV, = 0.75 (54.6) = 41.0kips

d.  Design shear reinforcement in accordance with 11.5.

Required area of shear reinforcement Av is computed by

_ My -9Vo)s
v ofyd
Assumes = 3 in. (maximum spacing permitted = d/2) 11.5.4.1

_ (1198 - 41.0) x 3

- = 0.88 in.
T 075 X 60 X 6 n

where Ay is total area of shear reinforcement required on the four sides of the
column (see Fig. 16-5).

. 0.88 )
Ay (perside) = —4— =022in.2
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Example 16.3 (cont’d) Calculations and Discussion Reference

Determine distance from sides of colormn where stirrups ray be terminated (see Fig. 16-5).

Vu £ 0V, Eq. (11-1)
< ¢24f byd

For square column (see sketch below),

bo = 4 (12 + a2}

119,800 < 0.75 X 2/4000 x 4 (12 + avZ) x 6

Solving, a = 28.7in.

Note that the above is a conservative estimate, since Vy at the perimeter of the
critical section shown below is considerably lower than 119.8 kips.

Stirrups may be terminated at d/2 = 3 in. inside the critical perimeter bo.

Use 9-No. 3 closed stirrups @ 3 in. spacing (Av = 0.22 in.2) along each column line
as shown below.

2d =12"
R 3
% in
.
o v,
197 a Section A-A
5. Increase shear strength by steel 1 shapes (shearheads): 11.12.4
a.  Check maximum shear strength permitted with steel shapes (see Fig. 18-8). 11.12.4.8
Vo = 0273 (212-1.52) = 119.8 kips

Va £ $V, Eq. (11-1)
¢Vo=0(74Eib.d) 11.12.4.8

< 0.75(7 4,000 X 72X 6)/1,000=143.4 kips > V, =119 8 kips OK.
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b.  Determine minimum required perimeter by of a critical section at shearhead ends with shear strength
limited to V, = 4.ff bod (see Fig. 16-6 (b)).

Vi € ¢V, Eq. (11-1)
119,800 < 0.75(44/4,000x b, x 6
Solving, by = 105.2 in. 11.12.4.7

¢. Determine required length of shearhead arm £, to satisfy bo = 105.2 in. at 11.124.7
0.75 (£, - ¢ /2).

3
by = 442 [% + " (Zv - Z—IJ] (see Fig. 16-6 (b))

Withbo = 105.2 in. and ¢1 = 12 in., solving, ¢, =22.8 in,

Note that the above is a conservative estimate, since Vy, at the perimeter of the
critical section considered is considerably lower than 119.8 kips.

d. To ensure that premature flexural failure of shearhead does not occur before shear
strength of slab is reached, determine required plastic moment strength Mp of each
shearhead arm.

V, c
$Mp = 2—3 [hv +Qy (Ev - TIH Eq. (11-37)

For a four (identical) arm shearhead, n = 4; assuming hy =4 in. and o, = 0.25: 11.12.4.5

119.8 12
M =——i4+0.25 23.6-—||= Bin.-ki
oM 2(4)[ +025[ 6 2):' 125.8 in.-kips

¢ = 0.9 (tension - controlled member) 9.3.2.1

] 125.8 . .
Required Mp = 09 = 139.8 in.-kips

Try W4 x 13 (plastic modulus Zx = 6.28 in.3) A36 steel shearhead

Mp = Zify = 6.28 (36) = 226.1 in.-kips > 139.8 in-kips O.K.

e. Check depth limitation of W4 x 13 shearhead. 11.12.4.2
TOtw = 70(0.280) = 19.6in. > hy = 4.16in. O.K.

f.  Determine location of compression flange of steel shape with respect to 11.12.4.4
compression surface of slab, assuming 3/4-in. cover and 2 layers of No. 5 bars.

03d = 03(6) = 1.8in. < 0.75+2(0.625) = 2in. N.G.
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Example 16.3 {(cont’d) Calculations and Discussion Reference

Therefore, both layers of the No. 5 bars in the bottom of the slab must be cut.
g. Determine relative stiffness ratio a,.

For the W4 X 13 shape:

Ast = 3.83in.2 [L 12" 1
Is = 113 in4 —A—7 /nAs =9.92in2
7.5 " n.a.
& ¥
275 kd = 2.34"

As provided for My = 175 ft-kips is No. 5 @ 5 in.

c.g. of W4 X 13 from compression face = 0.75+2 = 2.75in.

Effective slab width = c2+d = 12+ 6 = 18in.

Transformed section properties:

E 29,000
For f, = 4,000 psi, use E—z = e

Steel transformed to equivalent concrete:

ES
E.As = 8(4x031) = 992in2
[

E
‘E‘S“Asl = (3.83) = 30.64in.2
[

Neutral axis of composite cracked slab section may be obtained by equating the
static moments of the transformed areas.

18 (kd)>
2
where kd is the depth of the neutral axis for the ransformed area

Solving, kd = 2.34 in.

= 3064 (2.75-kd) + 9.92 (6 - kd)
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45 @ 5" Y Va Full penetration weld

ZE i / all around (typ.}

L = - 7.5"
. — >

#5 bars - Cutto y

place W4x13

0.75" (typ.)

Final Details of Shearhead Reinforcement

18 (2.34)°

Composite | = 3

E
+ Ei (Is steel shape) + 9.92 (3.66)2 + 30.64 (0.41)2
[

769 +8 (11.3)+ 1329+52 = 3054in4

ft

= E/Ed _ BXx113 _ 433,015 oK

Icomposite 305.4

Therefore, W4 X 13 section satisfies all code requirements for shearhead
reinforcement.

h. Determine contribution of shearhead to negative moment strength of column strip. 11.12.4.9

po, Vy €]
M = —L 2 lF - = -
v n v Eq. (11-38)

- 09x030x119.8 (25—6)=76.8 in.-kips =6.4 ft -kips
2x4
However, My must not exceed either Mp = 139.8 in.-kips or 0.3 X 175 x 12 = i
630 in.kips, or the change in colurn strip moment over the length ¢,,. For this design,
approximately 4% of the column strip negative moment may be considered resisted by the
shearhead reinforcement.
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Example 16.4—Shear Strength of Slab with Transfer of Moment

Consider an exterior (edge) panel of a flat plate slab system supported by a 16-in. square column. Determine
shear strength for transfer of direct shear and moment between slab and column support. Overall slab thickness
h=7.25in. (d = 6.0in.). Assume that the Direct Design Method is used for analysis of the slab. Consider two
loading conditions:

1. Total factored shear force Vy = 30 kips

Total factored static moment M, in the end span = 96 ft-kips

2. Vu=60kips
M, = 170 ft-kips
f, = 4,000 psi
fy = 60,000 psi
Code
Calculations and Discussion Reference

1. Section properties for shear stress computations:

Referring to Fig. 16-13, edge column bending perpendicular to edge (Case C),

d 6
bt = ci1 + 5 16 +E = 19.01in.

by =c2+d = 16+6 = 22.01n.

bo = 2 (19.0) + 22 = 60.0in. — I
b2 In 'Iw‘ [

Y
|
~
i
a

€= 2b; + by e
b =1 A
19.0° . e
=—————=06.02 in. i i b r
(2x19.0)+22.0 AR N
| o
I O
I, S
Ac = (2by+b2)d = 360in.2 ! J
Y
—-— - Y
2b,%d(b, +2b, )+ d*(2b, + b —-—L—df2=3“
1=-[ d(b+20,)+ (28, 2)]:2,508 in

c ob,
¢’ =bi-c =19-6.02 = 12.98in.

J JYec 6.02
—=f==1=2508 —= | = P
o (CIC'] [12.98) 1,163 in.
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2. Loading condition (1), Vi = 30kips, Mo = 96 fi-kips:
a.  Portion of unbalanced moment to be transferred by eccentricity of shear. ' 11.12.6.1
Yo = 1-7¢ Eq. (11-39)

For unbalanced moments about an axis parallel to the edge at exterior supports, the 13.5.3.3
value of y¢ can be taken equal to 1.0 provided that Vy < 0.75¢V,.

V, = 44/f. b,d Eq. (11-35) |

= 444,000 x 60 x 6.0/1,000 = 91.1 kips

6=0.75 9.3.2.3

0.75¢V,=0.75 x 0.75 x 91.1=51.2 kips > V, =30 kips

Therefore, all of the unbalanced moment at the support may be considered transferred by
flexure (i.e., y¢ = 1.0 and y, = 0). Note that y¢ can be taken as 1.0 provided that p
within the effective slab width 3h +c¢2 = 21.75+ 16 =37.75 in. is not greater than 0.375py,.

b.  Check shear strength of slab without shear reinforcement.

Combined shear stress along inside face of critical transfer section.

Voy — My " YeMyc _ 30,000

ul A, ] 360 +0=183.3 psi

Permissible shear stress:
0Va =041 = 0.75(44/4,000) = 189.7 psi > v,, =83.3 psi OK.

Slab shear strength is adequate for the required shear and moment transfer between
slab and column.

Design for the portion of unbalanced moment transferred by flexure y¢M, 13.5.3.2
must also be considered. See Example 19.1 when using the Direct Design Method.
See Example 20.1 for the Equivalent Frame Method.

For the Direct Design Method, y;M, = 1.0 x (0.26 M) = 25 ft-kips to be 13.6.3.3
transferred over the effective width of 37.75 in., provided that p within the 37.75-in. 13.6.3.3

width < 0.375 p,.
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Example 16.4 (cont’d) Calculations and Discussion Reference
= 0.75[2 2,000 + 3% 029 60,000}
60x 3.0

= 0.75(126.5+220.0) = 2599 psi > vu1 = 2594 psi O.K.

e. Determine distance from sides of column where stirrups may be terminated.

v,

< 0V, 11.12.3.1
OV, = 92,fb,d
where b, = 222 + (3 x 16)

60,000 < 0.75 % 24/4,000 (Za\E + 43)6.0

Solving, a = 20.3 in.

Note that the above is a conservative estimate, since Vy at the perimeter of the
critical section considered is considerably lower than 60 kips.

No. of stirrups required = (20.3 - d/2)/3.0 = 5.8
(Stirrups may be terminated at d/2 = 3.0 in. inside perimeter bo)

Use 6-No. 3 closed stirrups @ 3.0 in. spacing along the three sides of the column.
Use similar stirrup detail as for Example 16.3.

3"
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17

Strut-and-Tie Models

GENERAL

The strut-and-tie model is essentially a truss analogy. It is based on the fact that concrete is strong in compres-
sion, and that steel is strong in tension. Truss members that are in compression are made up of concrete, while
truss members that are in tension consist of steel reinforcement.

Appendix A, Strut-and-Tie Models, was introduced in ACI 318-02. It provides a design approach, applicable to
an array of design problems that do not have an explicit design solution in the body of the code. This method
requires the designer to consciously select a realistic load path within the structural member in the form of an
idealized truss. Rational detailing of the truss elements and compliance with equilibrium assures the safe trans-
fer of loads to the supports or to other regions designed by conventional procedures. While solutions provided
with this powerful design and analysis tool are not unique, they represent a conservative lower bound approach.
As opposed to some of the prescriptive formulations in the body of ACI 318, the very visual, rational strut-and-
tie model of Appendix A gives insight into detailing needs of irregular regions of concrete structures and pro-
motes ductility.

The design methodology presented in Appendix A is largely based on the seminal articles on the subject by
Schlaich et al.17-1, Collins and Mitcheli!’-2, and Marti!7-3. Since publication of these papers, the strut-and-tie
method has received increased attention by researchers and textbook writers (Collins and Mitchelt!74, MacGregor
and Wight!7-5), MacGregor described the background of provisions incorporated in Appendix A in ACI Special
Publication SP-20817-6, The present form of Appendix A does not include explicit serviceability provisions
(such as deflection control).

Al DEFINITIONS

The strut-and-tie design procedure calls for the distinction of two types of zones in a concrete component
depending on the characteristics of stress fields at each location. Thus, structural members are divided into B-
regions and D-regions.

B-regions represent portions of a member in which the “plane section” assumptions of the classical beam theory
can be applied with a sectional design approach.

D-regions are all the zones outside the B-regions where cross-sectional planes do not remain plane upon load-
ing. D-regions are typically assumed at portions of a member where discontinnities (or disturbances) of stress
distribution occur due to concentrated forces (loads or reactions) or abrupt changes of geometry. Based on St.
Venant’s Principle, the normal stresses (due to axial load and bending) approach quasi-linear distribution at a
distance approximately equal to the larger of the overall height (h) and width of the member, away from the



location of the concentrated force or geometric irregularity. Figure 17-1 illustrates typical discontinuities, D-
Regions (cross-hatched areas), and B-Regions.

.
W V7 /T//

(2) Bearn with Concentrated Load

A

)

{b) Change in Cofumn {c) Transfer Girder
or Wall Geometry Supporting a Column
h
—F
V//ﬁﬁ//
h + / <ih
>

h h

(e} Opening in Beam

1 / 5 -egon

0 - Region

Lg
(d) Double Corbel

Figure 17-1 Load and Geometric Discontinuities

While B-regions can be designed with the traditional methods (ACI 318 Chapters 10 and 11), the strut-and-tie
model was primarily introduced to facilitate the design of D-regions, and can be extended to the B-regions as
well. The strut-and-tie model depicts the D-region of the structural member with a truss systern consisting of
compression struts and tension ties connected at podes as shown in Fig. 17-2. This truss systemn is designed to
transfer the factored loads to the supports or to adjacent B-regions. At the same time, forces in the truss members
should maintain equilibrium with the applied loads and reactions.
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Figure 17-2 Strut-and-Tie Model

Struts are the compression elements of the strut-and-tie model representing the resultants of a compression
field. Both parallel and fan shaped compression fields can be modeled by their resultant compression struts as
shown in Fig. 17-3.
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Prismatic Struts

i Y
1 Fan-Shaped Struts T

Prismatic Struts

Figure 17-3 Prismatic and Fan-Shaped Struts

Typically compression struts would take a bottle-shape wherever the strut can spread laterally at mid-length. As
a design simplification, prismatic compression members commonly idealize struts, however, other shapes are
also possible. If the effective concrete compressive strength (f¢,) is different at the opposite ends of a strut, a
linearly tapering compression member is suggested. This condition may occur, if at the two ends of the strut the
nodal zones have different strengths or different bearing lengths. Should the compression stress be high in the
strut, reinforcement may be necessary to prevent splitting due to transverse tension. (The splitting crack that
develops in a cylinder supported on edge, and loaded in compression is a good example of the internal lateral
spread of the compressive stress trajectories).

Ties consist of conventional deformed steel, or prestressing steel, or both, plus a portion of the surrounding
concrete that is concentric with the axis of the tie. The surrounding concrete is not considered to resist axial
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force in the model. However, it reduces the elongation of the tie (tension stiffening), in particular, nnder service
loads. It also defines the zone in which the forces in the struts and ties are to be anchored.

Nodes are the intersection points of the axes of the struts, ties and concentrated forces, representing the joints of a
strut-and-tie model. To maintain equilibrium, at least three forces should act on a given node of the model. Nodes
are classified depending on the sign of the forces acting upon them (e.g., a C-C-C node resists three compression
forces, a C-T-T node resists one compression forces and two tensile forces, etc.) as shown in Fig. 17-4

/;P‘\ \i/

C—-C—C Node C-T-T Node
Figure 17-4 Classification of Nodes

A nodal zone is the volume of concrete that is assumed to transfer strut-and tie forces through the node. The
early strut-and-tie models used hydrostatic nodal zones, which were lately superseded by extended nodal zones.

The faces of a hydrostatic nodal zone are perpendicular to the axes of the struts and ties acting on the node, as
depicted in Fig. 17-5. The term hydrostatic refers to the fact that the in-plane stresses are the same in all
directions. (Note that in a true hydrostatic stress state the out-of plane stresses should be also equal). Assuming
identical stresses on all faces of a C-C-C nodal zone with three struts implies that the ratios of the lengths of the
sides of the nodal zones (wy| : Wn2 : Wy3) are proportional to the magnitude of the strut forces (C;: Cz : Ca).

Nodal Zone

-~ ™~

P

GG Cam Wyt Wyt Wiy

Figure 17-5 Hydrostatic Nodal Zone

The extended nodal zone is a portion of a member bounded by the intersection of the effective strut width, wy,
and the effective tie width, wy. This is illustrated in Fig. 17-6.

Wy -

upport (Bearing} Plate

Figure 17-6 Extended Nodal Zone
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A2 STRUT-AND-TIE MODEL DESIGN PROCEDURE

A design with the strut-and-tie model typically involves the following steps:

1. Define and isolate D-regions.

2. Compute resultant forces on each D-region boundary.

3. Devise a truss model to transfer the resultant forces across the D-region. The axes of the struts and ties,
respectively, are oriented to approximately coincide with the axes of the compression and tension stress
fields. ‘

4. Calculate forces in the truss members.

5 Determine the effective widths of the struts and nodal zones considering the forces from the previous steps and
the effective concrete strengths (defined in A.3.2 and A.5.2). Strength checks are based on

v

F,

u

2 Eq. (A-1)
where F, is the largest factored force obtained from the applicable load combinations, Fy is the nominal
strength of the strut, tie, or node, and the ¢ factor is listed in 9.3.2.6 as 0.75 for ties, strut, nodal zones and
bearing areas of strut-and-tie models.

6. Provide reinforcement for the ties considering the steel strengths defined in A4.1. The reinforcement must
be detailed to provide proper anchorage in the nodal zones

In addition to the strength limit states, represented by the strut-and-tie model, structural members should be
checked for serviceability requirements. Traditional elastic analysis can be used for deflection checks. Crack
control can be verified using provisions of 10.6.4, assuming that the tie is encased in a prism of concrete corre-
sponding to the area of tie (RA.4.2).

There are usually several strut-and-tie models that can be devised for a given structural member and loading
condition. Models that satisfy the serviceability requirements the best, have struts and ties that follow the com-
pressive and tensile stress trajectories, respectively. Certain construction rules of strut-and-tie models, e.g., “the
angle, ©, between the axes of any strut and any tie entering a single node shall not be taken as less than 25 degree
(A.2.5) are imposed to mitigate potential cracking problems and to avoid incompatibilities due to shortening of
the struts and lengthening of the ties in almost the same direction.

A3 STRENGTH OF STRUTS
The nominal compressive strength of a strut without longitudinal reinforcement shall be taken as

Fps = fce Acs Eq. (A-2)
to be calculated at the weaker end of the compression member. A is the cross-sectional area at the end of the
strut. In typical two-dimensional members, the width of the strut (ws) can be taken as the width of the member.
The effective compressive strength of the concrete (fee) for this purpose shall be taken as the lesser of the
concrete strengths at the two sides of the nodal zone/strut interface. Section A.3.2 specifies the calculation of fee
for the strut (detailed below), while A.5.2 provides for the same in the nodal zone (discussed later).

The effective compressive strength of the concrete in a strut is calculated, similarly to basic strength equations, as:

fo = 0.85Pf, Eq. (A-3)

The P, factor accounts for the effect of cracking and possible presence of transverse reinforcement. The strength
of the concrete in a strut can be computed with B = 1.0 for struts that have uniform cross sectional area over their
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length. This is quasi-equivalent to the rectangular stress block in the compression zone of a beam or column.
For bottle-shaped struts (Fig. 17-7) with reinforcement placed to resist the splitting forces (satisfying A3.3)
Bs = 0.75 or without adequate confinement to resist splitting forces B; =0.6A (where is a correction factor

{11.7.4.3) for lightweight concrete.)

For struts intersecting cracks in a tensile zone, (5 is reduced to 0.4. Examples include strut-and-tie models used
to design the longitudinal and transverse reinforcement of the tension flanges of beams, box-girders and walls.
For all other cases (e.g., in beam webs where struts are likely to be crossed by inclined cracks), the B factor can
be conservatively taken as 0.6.

4
¢ L Tig 5 P
II\II \\/\\ Il
.- P Width Used to

I‘ T Compute Acs

Figure 17-7 Bottle Shaped Compression Strut

Section A.3.3 addresses cases where transverse reinforcement is provided to cross the bottle-shaped struts. The
compression forces in the strut may be assumed to spread at a slope 2:1. The rebars are intended to resist the
transverse tensile forces resulting from the compression force spreading in the strut. They may be placed in one
layer (when the ¥ angle between the rebar and the axis of the strut is at least 40 degree) or in two orthogonal layers.

To allow for g = (.75, for concrete strength not exceeding 6000 psi, the reinforcement ratio needed to cross the
strut is:
3 Asi g 1; 20.003 E
bs; i q. (A-4)
where Agj is the total area of reinforcement at spacing s; in a layer of reinforcement with bars at an angle 7, to the
axis of the strut (shown in Fig. 17-8), and by is the width of the strut. Often, this reinforcement ratio cannot be

provided due to space limitations. In those cases P, =0.6A shall be used.
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Figure 17-8 Layers of Reinforcement to Restrain Spiitting Cracks of Struts
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If substantiated by test and analyses, increased effective compressive strength of a strut due to confining rein-
forcement may be used (e.g., at anchorage zones of prestressing tendons). This topic is discussed in detail in
Refs. 17.7 and 17.8.

Additional strength can be provided to the struts by including compression reinforcement parallel to the axis of
the strut, These bars must be properly anchored and enclosed by ties or spirals per 7.10. The compressive
strength of these longitudinally reinforced struts can be calculated as:

LA 4

Fy = feeAes + Agfy Eq. (A-5)

where f; is the stress in the longitudinal strut reinforcement at nominal strength. It can be either obtained from
strain analyses at the time the strut crushes or taken as f5' = fy for Grade 40 and 60 rebars.

A4 STRENGTH OF TIES

The nominal strength of a tie is calculated as the sum of yield strength of the conventional reinforcement plus the
force in the prestressing steel:

Fu = Ay + Ap(fe + AF) Eq. (A-6)

Note, that Ay is zero if there is no prestressing present in the tie. The actual prestressing stress (fe + Afy)
should not exceed the yield stress fpy of the prestressing steel. Also, if not calculated, the code allows to estimate
the increase in prestressing steel stress due to factored loads Afy,, as 60,000 psi for bonded prestressed reinforce-
ment, or 10,000 psi for unbonded prestressed reinforcement.

Since the intent of having a tie is to provide for a tension element in a truss, the axis of the reinforcement centroid
shall coincide with the axis of the tie assumed in the model. Depending on the distribution of the tie reinforce-
ment, the effective tie width {(w,) may vary between the following limits:
e The minimum width for configurations where only one layer of reinforcement provided in a tie, wy can
be taken as the diameter of the bars in the tie plus twice the concrete cover to the surface of the ties.
Should the tie be wider than this, the reinforcement shall be distributed evenly over the width.
* The upper limit is established as the width corresponding to the width in a hydrostatic nodal zone,
calculated as

Wrmax = Fnt/fce

where f. is the applicable effective compression strength of a nodal zone discussed below.

Nodes shall be able to develop the difference between the forces of truss members connecting to them. Thus,
besides providing adequate amount of tie reinforcement, special attention shall be paid to proper anchorage.
Anchorage can be achieved using mechanical devices, post-tensioning anchorage devices, standard hooks, or
straight bar embedment. The reinforcement in a tie should be anchored before it leaves the extended nodal zone,
i.e., at the point defined by the intersection of the centroid of the bars in the tie and the extensions of the outlines
of either the strut or the bearing area as shown on Fig.17-9. For truss layouts where more than one tie intersect
at a node, each tie force shall be developed at the point where the centroid of the reinforcement in the tie leaves
the extended nodal zone. (Nole, that transverse reinforcement required by A3.3 shall be anchored according to
the provisions of 12.13).

In many cases the structural configuration does not allow to provide for the straight development length for a tie.
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For such cases, anchorage is provided through mechanical devices, hooks, or splicing with several layers of
smaller bars. These options often require a wider structural member and/or additional confinement reinforce-
ment (e.g., to avoid cracking along the outside of the hooks).

Axis of Strut
A
4 ,
L4
r', ,/ -
.~ rd e
rd ”, -
S s e
’ v "4
/ r/ d
Extended _| /’ e ’/ <
Nodal Zone | % e - .
' ’ i Centroid
N R e of Tie
NN === =
Nodal Zone — A}y T

:rw Critical Section

Figure 17-9 Anchorage of Tie Reinforcement

A5 STRENGTH OF NODAL ZONES
The nominal compression strength at the face of a nodal zone or at any section through the nodal zone shall be:
Fon = feeAnz Eq. (A-7)

where A, is taken as the area of the face of the nodal zone that the strut force Fy acts on, if the face is perpen-
dicular to the line of action of F,. If the nodal zone is limited by some other criteria, the node-to-strut interface
may not be perpendicular to the axis of the strut, therefore, the axial stresses in the compression-only strut will
generate both shear and normal stresses acting on the interface. In those cases, the Ay, parameter shall be the
area of a section, taken through the nodal zone perpendicular to the strut axis.

The strut-and-tie model is applicable to three-dimensional situations as well. In order to keep calculations
simple, A5.3 allows the area of the nodal faces to be less than that described above. The shape of each face of the
nodal zones must be similar to the shape of the projection of the end of the struts onto the corresponding faces of
the nodal zones.

The effective compressive strength of the concrete in the nodal zone (fqe) is calculated as:

f.. = 0.85B,f, Eq. (A-8)

and must not exceed the effective concrete compressive strength on the face of a nodal zone due to the strut-and-
tie model forces, unless confining reinforcement is provided within the nodal zone and its effect is evidenced by
tests and analysis. The sign of forces acting on the node influences the capacity at the nodal zones as reflected
by the By, value. The presence of tensile stresses due to ties decreases the nodal zone concrete strength.

Ba = 1.0 in nodal zones bounded by struts or bearing areas (e.g., C-C-C nodes)

Ba = 0.8 in nodal zones anchoring one tie (e.g., C-C-T nodes)
Bn = 0.6 in nodal zones anchoring two or more ties (e.g., C-T-T or T-T-T nodes).
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Example 17.1—Design of Deep Flexural Member by the Strut-and-Tie Model

Determine the required reinforcement for the simply supported transfer girder shown in Fig. 17-10.
The single column at midspan subjects the girder to 180 kips dead load and 250 kips live load.

20" )
el
©_I/IV|' £ =4000 psi
. i Grade 60
3 I
o L]
!
e «/J,
20“ . 6I_OII L 6I_0" _L_J @
16" 16"
Figure 17-10 Transfer Girder
Code
Calculations and Discussion Reference
1. Calculate factored load and reactions
The transfer girder dead load is conservatively lumped to the column load at midspan.
Transfer girder dead load is:
520/12y [6 + 6+ (32/12)]1 0.15 = 18.5 kips
Py =12D+16L= 12 x {185+ 180+ 1.6 x 250 = 640kips Eq. (9-2)
Ra= Rp = 640/2 = 320 kips
2. Determine if this beam satisfies the definition of a “deep beam” 10.7.1
11.8.1
Overall girder height h = 5 ft
Clear span £, = 12 ft
-g—“ = -1—2~ =24 < 4
h 5
Member is a “deep beam™ and will be designed using Appendix A.
3. Check the maximum shear capacity of the cross section
Vy = 320 kips
Maximum ¢V, = ¢>(10 fébwd) 11.8.3
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Code
Example 17.1 (cont’d) Calculations and Discussion Reference

= 0.75(104/4000 x 20 x 54)/1000 = 512 kips > v, OK.

4. Establish truss mode!

Assume that the nodes coincide with the centerline of the columns (supports), and are located
5 in. from the upper or lower edge of the beam as shown in Fig. 17-11. The strut-and-tie model
consists of two struts (A-C and B-C), one tie (A-B), and three nodes (A, B, and C). In addition,
columns at A and B act as struts representing reactions. The vertical strut at the top of Node C

represents the applied load.
H q‘ n
80 ] 80 J
F - "

@Tg”]&o kips

5II

= // \"-..

8 /// \\\

fn @[\// \""A
320 kips [ A]320 kips

|
¢
Figure 17-11 Preliminary Truss Layout

The length of the diagonal struts = . 50% +80% =943 in.

943 .
The force in the diagonal struts = 3205-—: 603 kips

80 .
The force in the horizontal tie = 320_56= 512 kips

Verify the angle between axis of strut and tie entering Node A.

The angle between the diagonal struts and the horizontal tie = tan! (50/80) =32°>25° O.K. AZS5

5. Calculate the effective concrete strength (fee) for the struts assuming that reinforcement is
provided per A.3.3 to resist splitting forces. (See Step 9)

For the “bottle-shaped” Struts A-C & B-C
f.. =0.85 Byf =0.85x0.75x 4000= 2550 psi Eq. (A-3)
where B, =0.75 per A.3.2.2(a)

Note, this effective compressive strength cannot exceed the strength of the nodes at both
ends of the strut. See A.3.1.
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Code
Example 17.1 (cont’d) Calculations and Discussion Reference

The vertical struts at A, B, and C have uniform cross-sectional area throughout their length.

ﬁs= 1.0 ’ Al3z21

foo= 0.85 x 1.0 x 4000 = 3400 psi
6. Calculate the effective concrete strength (f..) for Nodal Zones A, B, and C

Nodal Zone C is bounded by three struts. So this is a C-C-C nodal zone
with B, = 1.0 As21

fo= 0.858,f.= 0.85 x 0.80 x 4000 = 2720 psi Eq. (A-8)

Nodal Zones A and B are bounded by two struts and a tie. For a C-C-T node:
B,= 0.80

fee = 0.85B,f. = 0.85 x 0.80 x 4000 = 2720 psi
7. Check strength at Node C

Assume that a hydrostatic nodal zone is formed at Node C. This means that the
faces of the nodal zone are perpendicular to the axis of the respective struts, and
that the stresses are tdentical on all faces.

To satisfy the strength criteria for all three struts and the node, the minimum nodal face
dimension is determined based on the least strength value of . = 2550 psi. The same

strength value will be used for Nodes A and B as well.

The strength checks for all components of the strut and tie model are based on
oK, =2 F, Eq. (A-1)

where ¢ = 0.75 for struts, ties, and nodes. 9.3.2.6

The length of the horizontal face of Nodal Zone C is calculated as

640,000
0.75 x 2550 x 20

= 16.7 in. (less than column width of 20 in.)

The length of the other faces, perpendicular to the diagonal struts, can be obtained from
proportionality:

16.7 x 803 = 157 in.
640
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Code

Example 17.1 {cont’d) Calculations and Discussion Reference

8. Check the truss geometry.

AtNode C

0

13.3"

Figure 17-12 Geometry of Node C

The center of the nodal zone is at 4.0 in. from the top of the beam, which is very
close to the assumed S in.

At Node A

p—-13.4"

—8.4" —
Figure 17-13 Geomelry of Node A
The horizontal tie should exert a force on this node to create a stress of 2550 psi.

Thus size of the vertical face of the nodal zone is

512,000
0.75 x 2550 x 20

= 13.4 in.

The center of the tie is located 13.4/2 = 6.7 in. from the bottom of the beam.
This is reasonably close to the 5 in. originaily assumed, so no further iteration is warranted.

Width of node at Support A

320,000
0.75 x 2550 x 20

= 84in.
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Code
Example 17.1 (cont’d) Calculations and Discussion Reference

9. Provide vertical and horizontal reinforcement to resist splitting of diagonal struts.
The angle between the vertical ties and the struts is 90°- 32° = 58° (sin 58° = (.85).

Try two overlapping No. 4 ties @ 12 in. O.C. (to accomodate the longitudinal e reinforce-
ment designed in Step 10, below.

Asi . 4 x 0.20
—L ; = —————— x (.85 = 0.002 . (A-
be sinvy;, 50 % 2 X 83 Eq. (A-4)

and No. 5 horizontal bars @ 12 in. O.C. on each side face (sin 32° = 0.53)

2 x 0.31
20 x 12

x 0.53 = 0.00137

Z—-—sm'{l 0.00283 + 0.00137 = 0.0042 > 0.003 OK. Eq. (A-4)

10. Provide horizontal reinforcing steel for the tie

Agg =~ = M2 4y 42
T ¢f, 075 x 60

Select 16 - No. 8 A =12.64in?

These bars must be properly anchored. The anchorage is to be measured from the point
where the tie exits the extended nodal zone as shown in Fig. 17-14,

/'_"\\//{\\\//”“*-\7 —

N \\
e
Exended
NOda! Zone
Nedal
Zona ga
44
A
.\'320
40 L oap x=107"
T |
__é_ £y
A i L.
L & 8 ]
f‘ T 9

Figure 17-14 Development of Tie Reinforcement Within the Extended Nodal Zone
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Code
Example 17.1 (cont’d) Calculations and Discussion Reference

Distance X =6.7/tan 32 =10.7 in.

Awailable space for a straight bar embedment

10.7+ 4.2 + 8- 2.0 (cover) =20.9 in.

This length is inadeguate to develop a straight No. 8 bar.

Development length for 2 No. 8 bar with a standard 90 deg. hook
Lan = 002y, 1T2) dp | 1252

= (0.02( 1.0)(1.0)60,000/ +/ 4000) 1.0

=19.0<20.9in. O.K.

Note: the 90 degree hooks will be enclosed within the column reinforcement that extends
in the transfer girder. (Fig. 17-15) By providing adequate cover and transverse confine-
ment, the development length of the standard hook could be reduced by the modifiers of
12.5.3.

Less congested reinforcement schemes can be devised with reinforcing steel welded to
bearing plates, or with the use of prestressing steel.

Comments:

The discrepancy in the vertical location of the nodes results in a negligible (about 1.5
percent) difference in the truss forces. Thus, another iteration is not warranted.

There are several alternative strut-and-tie models that could have been selected for this
problem. An alternative truss layout is illustrated in Fig. 17-16. It has the advantage that
the force in the bottom chord varies between nodes, instead of being constant between
supports. Further, the truss posts carry truss forces, instead of providing vertical rein-
forcement just for crack control (A.3.3.1). Finally, the diagonals are steeper, therefore the
diagonal compression and the bottom chord forces are reduced. The optimum idealized
truss is one that requires the least amount of reinforcement.
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Code
Example 17.1 (cont’d) Calculations and Discussion Reference
A9
o
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Section A-A

Figure 17-15 Detail of Tie Reinforcement
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Figure 17-16 Altemnative Strut-and-Tie Model
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Example 17.2—Design of Column Corbel

Design the single corbel of the 16 in. x 16 in. reinforced concrete column for a vertical force ¥y = 60 kips and
horizontal force Ny = 12 kips. Assume f; = 5000 psi, and Grade 60 reinforcing steel.

/\/

L 7.8
\ .
\ |Vu=60kips
Hu\
u= 12 kips

10"

10"

10"

AL

16"

Figure 17-17 Design of Corbel

Code
Calculations and Discussion Reference

1. Establish the geometry of a trial truss and calculate force demand in members.

2.0';

18.0"

16.0"

Figure 17-18 Truss Layout

17-17



Code
Example 17.2 (cont’d) Calculations and Discussion Reference

2. Provide reinforcement for ties
Use ¢ = 0.75 _ 9.3.2.6
The nominal strength of ties is to be taken as:
By = Agfy + Ag(fie + Af) Eq. (A-6)
where the last term can be ignored for nonprestressed reinforcement
TieAB F, = 46.3 kips

Ag= 2o o %3 ) 3in? Provide 4-No.5 Ag = 124in2
of,  0.75 x 60

TieCD F, = 12.0kips

120
57 0.75 x 60

0.27 in? Provide No. 4 tie (2 legs) A, = 0.40in2

I

 TieBD&DF P, = 932 kips
932

5 = 075 x 60 2.07in2 Provide steel in addition of the vertical column reinforcement

Il

This reinforcement may be added longitudinal bar or a rebar bent at Node A, that is used as
Tie AB as well.

3. Calculate strut widths

It is assumed that transverse reinforcement will be provided in compliance with A.3.3, s0 a
Bs = 0.75 can be used in calculating the strut length

foe = 0.85 B,f = 0.85 x 0.75 x 5000 = 3187 kips Eq. (A-3)
Of.e = 0.75 x 3187 = 2390 psi

Calculate the width of struts required

StutAC P, = 69.1kips

69,100

= ~—————— = 1.8lin.
16 x 2390
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Example 17.2 (cont’d) Calculations and Discussion Reference
Strut BC
- 88800 2.321in.
16 x 2390
Strut CE
= ﬂo_(_)_ = 3.55in.
16 x 2390
Strut DE
=2 455
16 x 2390

The width of the struts will fit within the concrete column with the corbel.

Provide confinement reinforcement for the struts per A.3.3 in the form of horizontal ties
The angle of the diagonal struts to the horizontal hoops is 58 degree. Provide No. 4 hoops at 4.5 in.
on center.

~2 giny = ———— sin 58° = 0.0031 > 0.003 OK.

N\

7~ : a-No.s [/

No.4[ @45"0.C.

No. 4|j

1
2-No.10¢

Figure 17-19 Reinforcement Details
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18

Two-Way Slab Systems

UPDATE FOR THE '05 CODE

The primary drop panel definition was moved to Chapter 2. A new Section 13.2.5 was added to give additional
dimensional requirements for drop panel if the drop panel is intended to reduce the amount of negative rein-
forcement over a column or minimum required slab thickness. The new Section 13.2.5 replaces the deleted
Sections 13.3.7.1, 13.3.7.2, and 13.3.7.3.

13.1 SCOPE

Figure 18-1 shows the various types of two-way reinforced concrete slab systems in use at the present time that
may be designed according to Chapter 13.

A solid slab supported on beams on all four sides (Fig. 18-1(a)) was the original slab system in reinforced concrete.
With this system, if the ratio of the long to the short side of a slab panel is two or more, load transfer is predomi-
nantly by bending in the short direction and the panel essentially acts as a one-way slab. As the ratio of the sides
of a slab panel approaches unity {or as panel approaches a square shape), significant load is transferred by bending
in both orthogonal directions, and the panel should be treated as a two-way rather than a one-way slab.

As time progressed and technology evolved, the column-line beams gradually began to disappeac The resulting
slab system consisting of solid slabs supported directly on columns is called the flat plate (Fig. 18-1(1)). The two-
way flat plate is very efficient and economical and is currently the most widely used slab system for multistory
construction, such as motels, hotels, dormitories, apartment buildings, and hospitals. In comparison to other con-
crete floor/roof systems, flat plates can be constructed in less time and with minimum labor costs because the
system utilizes the simplest possible formwork and reinforcing stee! layout. The use of flat plate construction also
has other significant economic advantages. For instance, because of the shallow thickness of the floor system,
story heights are automatically reduced, resulting in smaller overall height of exterior walls and utility shafts;
shorter floor-to-ceiling partitions; reductions in plumbing, sprinkler, and duct risers; and a multitude of other items
of constroction. In cities like Washington, D.C., where the maximum height of buildings is restricted, the thin flat
plate permits the construction of the maximum number of stories in a given height. Flat plates also provide for the
most flexibility in the layout of columns, partitions, small openings, etc. An additional advantage of flat plate slabs
that should not be overlooked is their inherent fire resistance. Slab thickness required for structural purposes will,
in most cases, provide the fire resistance required by the general building code, without having to apply spray-on
fire proofing, or install a suspended ceiling. This is of particular importance where job conditions allow direct
application of the ceiling finish to the flat plate soffit, eliminating the need for suspended ceilings. Additional cost
and construction time savings are then possible as compared to other structural systems.

The principal limitation on the use of flat plate construction is imposed by shear around the columns (13.5.4). For
heavy loads or long spans, the flat plate is often thickened locally around the columns creating what are known as
drop panels. When a flat plate incorporates drop paneis, it is called a flat slab (Fig. 18-1(c)). Also for reasons of



shear around the columns, the colurmn tops are sometimes flared, creating column capitals. For purposes of design,
a column capital is part of the column, whereas a drop panel is part of the slab (13.7.3 and 13.7.4).

[N i

S < o \
{a) Two-Way Beam Supported Slab (b) Flat Plate
M [0
SIS
—an
—
(c) Flat Slab (d) Waffle Slab (Two-Way Joist Slab)

Figure 18-1 Types of Two-Way Slab Systems

Waffle slab construction (Fig. 18-1(d)) consists of rows of concrete joists at right angles to each other with solid
heads at the column (needed for shear strength). The joists are commonly formed by using standard square
“dome” forms. The domes are omitted around the columns to form the solid heads. For design purposes, waffle
slabs are considered as flat slabs with the solid heads acting as drop panels (13.1.3). Walffle slab construction
allows a considerable reduction in dead load as compared to conventional flat slab construction since the slab
thickness can be minimized due to the short span between the joists. Thus, it is particularly advantageous where
the use of long span and/or heavy loads is desired without the use of deepened drop panels or support beams.
The geometric shape formed by the joist ribs is often architecturally desirable.

13.14 Deflection Control—Minimum Slab Thickness

Minimum thickness/span ratios enable the designer to avoid extremely complex deflection calculations in rou-
tine designs. Deflections of two-way slab systems need not be computed if the overall slab thickness meets the
minimum requirements specified in 9.5.3. Minimum slab thicknesses for flat plates, flat slabs, and waffle slabs
based on Table 9.5(c), and two-way beam-supported slabs based on Egs. (9-12) and (9-13) are summarized in
Table 18-1, where ¢, is the clear span length in the long direction of a two-way slab panel. The tabulated values
are the controlling minimum thicknesses governed by interior, side, or corner panels assuming a constant slab
thickness for all panels making up a slab system. Practical edge beam sizes will usually provide beam-to-slab
stiffness ratios o greater than the minimum specified value of 0.8. A “standard” size drop panel that would
allow a 10% reduction in the minimum required thickness of a flat slab floor system is illustrated in Fig. 18-2.
Note that a drop of larger size and depth may be used if required for shear strength; however, a corresponding
lesser slab thickness is not permitted unless deflections are computed.

For design convenience, minimum thicknesses for the six types of two-way slab systems listed in Table 18-1 are
plotted in Fig. 18-3.

Refer to Part 10 for a general discussion on control of deflections for two-way slab systems, including design
examples of deflection caleulations for two-way slabs,
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Table 18-1 Minimum Thickness for Two-Way Siab Systems (Grade 60 Reinforcernent)

Two-Way Slab System Oy B Minimum h
Flat Plate — <2 7,730
Flat Plate with Spandrel Beams!  [Min. h=5in] — <2 £,/33
Flat Siab? — s2 £,/33
Flat Slab? with Spandrel beams!  [Min. h = 4 in] — <2 £,/36
<0.2 <2 £./30
1.0 1 £,/33
Two-Way Beam-Supported Stab3 2 £,/36
=220 1 2137
2 £,/44
<02 <2 7./33
1.0 1 £,/36
Two-Way Beam-Supported Slab1,3 2 £,/40
220 1 £./41
2 £./49

"Spandrel bearn-to-slab sfiffness ratio o > 0.8 (9.5.3.3)
ZDrop panel length > ¢/3, depth > 1.25h (13.3.7)
SMin. h=5in. fora,, < 2.0; min. h=3.5in. fora, > 2.0 (9.5.3.3)

2?2l6 2 776 ‘ (in each direction)
[ F _ i I

T i

> 1.25h—wl:25h,

¥

Figure 18-2 Drop Panel Details (13.2.5)
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12.0
11.0 - Fiat slab with
L spandrel beams®
10.0 /
T 90 :
: i . /
a Flat plate with /
£ 80~ spandrel beams™
g L and flat slab /
!_
g 7.0 ] e
= /
E - Flat plate —_| / /
S 60
; / ~~ Two-way
B beam-supported
5.0 ] slab (B = 1)
2.0 beam-supported ‘g2 0.8
A slab (B =2)* 0y > 2.0
m > 2.
3_0 1 1 | 1 I I 1 i il I | | 1 1 1 1
10.0 15.0 20.0 250 30.0
Longer Clear Span £, {ft}
Figure 18-3 Minirmum Slab Thickness for Two-Way Slab Systems (see Table 18-1)
13.2 DEFINITIONS

13.2.1 Design Strip

For analysis of a two-way slab system by either the Direct Design Method (13.6) or the Equivalent Frame
Method (13.7), the slab system is divided into design strips consisting of a column strip and half middle strip(s)
as defined in 13.2.1 and 13.2.2, and as illustrated in Fig. 18-4. The column strip is defined as having a width
equal to one-half the transverse or longitudinal span, whichever is smaller. The middle strip is bounded by two
column strips. Some judgment is required in applying the definitions given in 13.2.1 for column strips with
varying span lengths along the design strip.

The reason for specifying that the column strip width be based on the shorter of ¢; or ¢, is to account for the
tendency for moment to concentrate about the column line when the span length of the design strip is less than its
width,

13.2.4 Effective Beam Section
For slab systems with beams between supports, the beams include portions of the slab as flanges, as shown in

Fig. 18-5. Design constants and stiffness parameters used with the Direct Design and Equivalent Frame analysis
methods are based on the effective beam sections shown.
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133 SLAB REINFORCEMENT

«  Minimum area of reinforcement in each direction for two-way slab systems = 0.0018bh (b = slab width,
h = total thickness) for Grade 60 bars for either top or bottom steel (13.3.1).

»  Maximum bar spacing is 2h, but not more than 18 in. (13.3.2).

«  Minimum extensions for reinforcement in slabs without beams (flat plates and flat slabs) are prescribed in
Fig. 13.3.8 (13.3.8.1).
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Note that the reinforcement details of Fig. 13.3.8 do not apply to two-way slabs with beams between sSupports or
to slabs in non-sway or sway frames resisting lateral loads. For those slabs, a general analysis must be made
according to Chapter 12 of the Code to determine bar lengths based on the moment variation but shall not be less
than those prescribed in Fig. 13.3.8 (13.3.8.4). Reinforcement details for bent bars were deleted from Fig. 13.3.8
in the '89 code in view of their rare usage in today’s construction. Designers who wish to use bent bars in two-
way slabs (without beams) should refer to Fig. 13.4.8 of the 83 code, with due consideration of the integrity
requirements of 7.13 and 13.3.8 in the current code.

According to 13.3.6, special top and bottom reinforcement must be provided at the exterior corners of a slab with
spandrel beams that have a value of & greater than 1.0. The reinforcement must be designed for a moment equal to
the largest positive moment per unit width in the panel, and must be placed in a band parallel to the diagona! in the
top of the slab and a band perpendicular to the diagonal in the bottom of the slab (Fig. 18-6 (a)); alternatively, it may
be placed in two layers parallel to the edges of the slab in both the top and bottom of the slab (Fig. 18-6 (b)).
Additionally, the reinforcement must extend at least one-fifth of the Ionger span in each direction from the comer.

In slabs without beams, all bottom bars in the column strip shall be continuous or spliced with class A splices or with
mechanical or welded splices satisying 12.14.3 (13.3.8.5) to provide some capacity for the slab to span to an adjacent
support in the event a single support is damaged. Additionally, at least two of these continuous bottom bars shall pass
through the column and be anchored at exterior supports. In lift-slab construction and slabs with shearhead reinforce-
ment, clearance may be inadequate and it may not be practical to pass the column strip bottom reinforcing bars
through the column. In these cases, two continuous bonded bottom bars in each direction shall pass as close to the
column as possible through holes in the shearhead arms or, in the case of lift-slab construction, within the lifting
collar (13.3.8.6). This condition was initially addressed in the 1992 Code and was further clarified in 1999.

13.4 OPENINGS IN SLAB SYSTEMS

The code permits openings of any size in any slab system, provided that an analysis is performed that demon-
strates that both strength and serviceability requirements are satisfied (13.4.1). For slabs without beams; the
analysis of 13.4.1 is waived when the provisions of 13.4.2.1 through 13.4.2.4 are met:

* Inthe area common to intersecting middle strips, openings of any size are permitted (13.4.2.1).

* In the area common to intersecting column strips, maximum permitted opening size is one-eighth the
width of the column strip in either span (13.4.2.2).

*  In the area common to one column strip and one middle strip, maximum permitted opening size is
limited such that only a maximum of one-quarier of slab reinforcement in either strip may be inter-
rupted (13.4.2.3),

The total amount of reinforcement required for the panel without openings, in both directions, shall be main-
tained; thus, reinforcement interrupted by the opening must be replaced on each side of the opening. Figure 18-
7 illustrates the provisions of 13.4.2 for slabs with ¢, > £,. Refer to Part 16 for a discussion on the effect of
openings in slabs without beams on concrete shear strength (13.4.2.4).

13.5 DESIGN PROCEDURES

Section 13.5.1 permits design (analysis) of two-way slab systems by any method that satisfies code-defined
strength requirements (9.2 and 9.3), and all applicable code serviceability requirements, including specified
limits on deflections (9.5.3).

13.5.1.1 Gravity Load Analysis—Two methods of analysis of two-way slab systems under gravity loads
are addressed in Chapter 13: the simpler Direct Design Method (DIDM) of 13.6, and the more complex Equiva-
lent Frame Method (EFM) of 13.7. The Direct Design Method is an approximate method using moment coeffi
cients, while the Equivalent Frame (elastic analysis) Method is more exact, The approximate analysis procedure
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of the Direct Design Method will give reasonably conservative moment values for the stated design conditions
for slab systems within the limitations of 13.6.1.

Both methods are for analysis under gravity loads only, and are limited in application to buildings with columns
and/or walls laid out on a basically orthogonal grid, i.e., where column lines taken longitudinally and trans-
versely through the building are mutually perpendicular. Both methods are applicable to slabs with or without
beams between supports. Note that neither method applies to slab systems with beams spanning between other
beams; the beams must be located along column lines and be supported by columns or other essentially
nondeflecting supports at the corners of the slab panels.

13.5.1.2 Lateral Load Analysis—For lateral load analysis of frames, the model of the structure may be
based upon any approach that is shown to satisfy equilibrium and geometric compatibility and to be in reason-
able agreement with test data. Acceptable approaches include plate-bending finite-element models, effective
beam width models, and equivalent frame models. The stiffness values for frame members used in the analysis
must reflect effects of slab cracking, geometric parameters, and concentration of reinforcement.

During the life of the structure, ordinary occupancy loads and volume changes due to shrinkage and temperature
effects will cause cracking of slabs. To ensure that lateral drift caused by wind or earthquakes is not underesti-
mated, cracking of slabs must be considered in stiffness assumnptions for iateral drift calculations.

The stiffness of slab members is affected not only by cracking, but also by other parameters such as £/£, ¢1/4;,
cpfcy, and on concentration of reinforcement in the slab width defined in 13.5.3.2 for unbalanced moment
transfer by flexure. This added concentration of reinforcement increases stiffness by preventing premature yielding
and softening in the slab near the column supports. Consideration of the actual stiffness due to these factors is
important for lateral load analysis because lateral displacement can significantly affect the moments in the
columns, especially in tall morent frame buildings. Also, actual lateral displacement for a single story, or for the
total height of a building is an important consideration for building stability and performance.

Cracking reduces stiffness of the slab-beams as compared with that of an uncracked floor. The magnitude of the
loss of stiffness due to cracking will depend on the type of slab system and reinforcement details. For example,
prestressed slab systems with reduced slab cracking due 1o prestressing, and slab systems with large beams
between columns will lose less stiffness than a conventional reinforced flat plate system,

Prior to the 1999 code, the commentary indicated stiffness values based on Eq. (9-8) were reasonable. However,
this was deleted from the commentary in 1999, since factors such as volume change effects and early age
loading are not adequately represented in Eq. (9-8) . Since it is difficult to evaluate the effect of cracking on
stiffness, it is usually sufficient to use a lower bound value. On the assumption of a fully cracked slab with
minimum reinforcement at all locations, a stiffness for the slab-beam equal to one-fourth that based on the gross
area of concrete (Ky,/4) should be reasonable. A detailed evaluation of the effect of cracking may also be made.
Since slabs normally have more than minimum reinforcement and are not fully cracked, except under very
unusual conditions, the one-fourth value should be expected to provide a safe lower bound for stiffness under
lateral loads. See R13.5.1.2 for guidance on stiffness assumption for lateral load analysis.

Moments from an Equivalent Frame (or Direct Design) analysis for gravity loading may be combined with
moments from a lateral load analysis (13.5.1.3). Alternatively, the Equivalent Frame Analysis can be used for
lateral load analysis, if modified to account for reduced stiffness of the slab-beams.

For both vertical and lateral load analyses, moments at critical sections of the slab-beams are transversely dis-
tributed in accordance with 13.6.4 (column strips) and 13.6.6 (middle strips).

13.54 Shear in Two-Way Slab Systems

If two-way slab systems are supported by beams or walls, the slab shear is seldom a critical factor in design, as
the shear force at factored loads is generally well below the shear strength of the concrete.
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In contrast, when two-way slabs are supported directly by columns as in fiat plates or flat slabs, shear around the
columns is of critical importance. Shear strength at an exterior slab-column connection (without edge beams) is
especially critical because the total exterior negative slab moment must be transferred directly to the column.
This aspect of two-way slab design should not be taken lightly by the designer. Two-way slab systems will
normally be found to be quite “forgiving” if an error in the distribution or even in the amount of flexural rein-
forcement is made, but there will be no forgiveness if the required shear strength is not provided.

For slab systems supported directly by columns, it is advisable at an early stage in design to check the shear
strength of the slab in the vicinity of columns as illustrated in Fig. 18-8.

Two types of shear need to be considered in the design of flat plates or flat slabs supported directly on columns.
The first is the familiar one-way or beam-type shear, which may be critical in long narrow slabs. Analysis for
beam shear considers the slab to act as a wide beam spanning between the columns. The critical section is taken
at a distance d from the face of the column. Design against beam shear consists of checking for satisfaction of
the requirement indicated in Fig. 18-9(a). Beam shear in slabs is seldom a critical factor in design, as the shear
force is usually well below the shear strength of the concrete.

Two-way or “punching” shear is generally the more critical of the two types of shear in slab systems supported
directly on columns. Punching shear considers failure along the surface of a truncated cone or pyramid around a
column. The critical section is taken perpendicular to the slab at a distance d/2 from the perimeter of a column. The
shear force V,, to be resisted can be easily calculated as the total factored load on the area bounded by panel centerlines
around the column, less the load applied within the area defined by the critical shear perimeter (see Fig. 18-8).

Auj__j{_ Wﬂ_Jd _____ 1.

Critical shedr
‘perimeter |

|

_ Efiective aliea for direct

shear Iorcq
R

R 3.

A

Figure 18-8 Critical Locations for Slab Shear Strength

. Edge |
column |

BN R

|
i
. !
! DU
1 "\ — ;

In the absence of significant moment transfer from the slab to the column, design against punching shear consists of
making sure that the requirement of Fig. 18-9(b) is satisfied. For practical design, only direct shear (uniformiy
distributed around the perimeter b,) occurs around interior slab-column supports where no (or insignificant) moment
is to be transferred from the slab to the column. Significant moments may have to be carried when unbalanced gravity
loads on either side of an interior column or horizontal loading due to wind must be transferred from the slab to the
column. At exterior slab-column supports, the total exterior slab moment from gravity loads (plus any lateral load
moments due to wind or earthquake) must be transferred directly to the column.
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13.5.3 Transfer of Moment in Slab-Column Connections

Transfer of moment between a slab and a column takes place by a combination of flexure (13.5.3) and eccentric-
ity of shear (11.12.6.1). Shear due to moment transfer is assumed to act on a critical section at a distance d/2
from the face of the column (the same critical section around the column as that used for direct shear transfer; see
Fig. 18-9(b). The portion of the moment transferred by flexure is assumed to be transferred over a width of slab
equal to the transverse column width ¢5, plus 1.5 times the slab thickness (1.5h) on either side of the column
(13.5.3.2). Concentration of negative reinforcement is to be used 10 resist moment on this effeciive slab width.
The combined shear stress due to direct shear and moment transfer often governs the design, especially at the
exterior slab-column supports.

The portions of the total unbalanced moment M, to be transferred by eccentricity of shear and by flexure are
given by Egs. (11-39) and (13-1), respectively, where ¥,M,, is considered transferred by eccentricity of shear,
and Y¢M,, is considered transferred by flexure. At an interior square column with b; = by, 40% of the moment
is transferred by eccentricity of shear (Y, M, = 0.40M,), and 60% by flexure ( YeM, =0.60M,), where M,, is
the transfer moment at the centroid of the critical section. The moment M, at the exterior slab-column support
will generally not be computed at the centroid of the critical transfer section. In the Equivalent Frame analysis,
moments are computed at the column centerline. In the Direct Design Method, moments are computed at the
face of support. Considering the approximate nature of the procedure used to evaluate the stress distribution due to
moment transfer, it seems unwarranted to consider a change in moment to the critical section centroid; use of the
moment values at column centerline (EFM) or at face of support (DDM) directly would usually be accurate enough.

£y | Q panels V,y 29V,
''''''''''' <02,fF

where V,, is factored shear force (total
tactored load on shaded area).

4 gpanels V<4V,

where:

{ ¢(2 +—4B—J JE bod

Ve = 4
Ve = least of ¢[a5d+2)\ﬁ:bod

by

¢4J€ bod

() Two-way shear

V,, = factored shear force (total factored load on shaded area)
by = perimeter of critical section

B = long side/short side of reaction area

og = constant (11.12.2.1 (b))

Figure 18-9 Direct Shear at an Interior Slab-Column Support (see Fig. 18-8)

The factored shear stress on the critical transfer section is the sum of the direct shear and the shear caused by
moment transfer,
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For slabs supported on square columns, shear stress vy, must not exceed ¢4Jfg .

Computation of the combined shear stress involves the following properties of the critical transfer section:
A, = area of critical section
¢ = distance from centroid of critical section to face of section where stress is being computed
I = property of critical section analogous to polar moment of inertia

The above properties are given in Part 16. Note that in the case of flat slabs, two different critical sections need
to be considered in punching shear calculations, as shown in Fig, 18-10.

Unbalanced morment transfer between slab and an edge column (without spandrel beams) requires special con-
sideration when slabs are analyzed by the Direct Design Method for gravity loads. See discussion on 13.6.3.6in
Part 19,

Critical
secuonsN
L

d2/2~‘-vI d¢2{J

Figure 18-10 Critical Shear- Transfer Sections for Fiat Slabs

The provisions of 13.5.3.3 were introduced in the *95 Code. At exterior supports, for unbalanced moments about
an axis parallel to the edge, the portion of moment transferred by eccentricity of shear, v,M,,, may be reduced to
zero provided that the factored shear at the support (excluding the shear produced by moment transfer) does not
exceed 75 percent of the shear strength ¢V, defined in 11.12.2.1 for edge columns or 50 percent for comner
columns. Tests indicate that there is no significant interaction between shear and unbalanced moment at the
exterior support in such cases. It should be noted that as y,M,, is decreased, ¥y M, is increased.

Tests of interior supports have indicated that some flexibility in distributing unbalanced moment by shear and
flexure is also possible, but with more severe limitations than for exterior supports. For interior supports, the
unbalanced moment transferred by flexure is permitted to be increased up to 25 percent provided that the fac-
tored shear (excluding the shear caused by moment transfer) at an interior support does not exceed 40 percent of
the shear strength ¢V, defined in 11.12.2.1.

Note that the above modifications are permitted only when the reinforcement ratio p within the effective slab
width defined in 13.5.3.2 is less than or equal to 0.375py,. This provision is intended to improve ductile behavior

of the column-slab joint.

SEQUEL

The Direct Design Method and the Equivalent Frame Method for gravity load analysis of two-way slab systems
are treated in detail in the following Parts 19 and 20, respectively.
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19

Two-Way Slabs —
Direct Design Method

GENERAL CONSIDERATIONS

The Direct Design Method is an approximate procedure for analyzing two-way slab systems subjected to gravity
loads only. Since it is approximate, the method is limited to slab systems meeting the limitations specified in
13.6.1. Two-way slab systems not meeting these limitations must be analyzed by more accurate procedures such
as the Equivalent Frame Method, as specified in 13.7. See Part 20 for discussion and design examples using the
Equivalent Frame Method.

With the publication of ACI 318-83, the Direct Design Method for moment analysis of two-way slab systems
was greatly simplified by eliminating all stiffness calculations for determining design moments in an end span.
A table of moment coefficients for distribution of the total span moment in an end span (13.6.3.3) replaced the
expressions for distribution as a function of the stiffness ratio 0i,.. As a companion change, the then approxi-
mate Eq. (13-4) for unbalanced moment transfer between the slab and an interior column was also simplified
through elimination of the o, term. With these changes, the Direct Design Method became a truly direct
design procedure, with all design moments determined directly from moment coefficients. Also, a new 13.6.3.6
was added, addressing a special provision for shear due to moment transfer between a slab without beams and an
edge column when the approximate moment coefficients of 13.6.3.3 are used. See discussion on 13.6.3.6 below.
Through the 1989 (Revised 1992) edition of the code and commentary, R13.6.3.3 included a “Modified Stiffness
Method” reflecting the original distribution, and confirming that design aids and computer programs based on
the original distribution as a function of the stiffness ratio o, were still applicable for usage. The “Modified
Stiffness Method” was dropped from R13.6.3.3 in the 1995 edition of the code and commentary.

PRELIMINARY DESIGN

Before proceeding with the Direct Design Method, a preliminary slab thickness h needs to be determined for
control of deflections according to the minimum thickness requirements of 9.5.3. Table 18-1 and Fig. 18-3 can
be used to simplify minimum thickness computations.

For slab systems without beams, it is advisable at this stage in the design process to check the shear strength of
the slab in the vicinity of columns or other support locations in accordance with the special shear provision for
slabs (11.12). See discussion on 13.5.4 in Part 18,

Once a slab thickness has been selected, the Direct Design Method, which is essentially a three-step analysis
procedure, involves: (1) determining the total factored static moment for each span, (2) dividing the total
factored static moment between negative and positive moments within each span, and (3) distributing the nega-
tive and the positive moment to the column and the middle strips in the transverse direction.



For analysis, the slab system is divided into design strips consisting of a column strip and two half-middle
strip(s) as defined in 13.2.1 and 13.2.2, and as illustrated in Fig. 19-1. Some judgment is required in applying the
definitions given in 13.2.1 for slab systems with varying span lengths along the design strip.

13.6.1 Limitations
The Direct Design Method applies within the limitations illustrated in Fig. 19-2:
1. There must be three or more continuous spans in each direction;

2. Slab panels must be rectangular with a ratio of longer to shorter span (centerline-to-centerline of supports)
nof greater than 2;

3. Successive span lengths (centerline-to-centerline of supports) in each direction must not differ by more than
1/3 of the longer span;

4. Columns must not be offset more than 10% of the span (in direction of offset) from either axis between
centerlines of successive columns;

5. Loads must be uniformly distributed, with the unfactored or service live load not more than 2 times the
unfactored or service dead load (L/D £ 2);

6. For two-way beam-supported slabs, relative stiffness of beams in two perpendicular directions must satisfy
the minimum and maximum requirements given in 13.6.1.6; and

7. Redistribution of negative moments by 8.4 is not permitted.
13.6.2 Total Factored Static Moment for a Span

For uniform loading, the total design moment M,, for a span of the design strip is calculated by the simple static
moment expression:

2
M, = %ﬁ_ Eq. (13-4)

where q, is the factored combination of dead and live loads (psf), q, = 1.2wg + |.6W,. The clear span ¢, (in the
direction of analysis) is defined in a straightforward manner for columns or other supporting elements of rect-
angular cross-section. The clear span starts at the face of support. Face of support is defined as shown in Fig. 19-3.
One limitation requires that the clear span not be taken as less than 65% of the span center-to-center of supports
(13.6.2.5). The length ¢, is simply the span {centerline-to-centerline) transverse to £, ; however, when the span
adjacent and parallel to an edge is being considered, the distance from edge of slab to panel centerline is used for
¢5 1n calculation of M, (13.6.2.4),
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13.6.3 Negative and Positive Factored Moments

The total static moment for a span is divided into negative and positive design moments as shown in Fig. 19-4.
End span moments in Fig. 19-4 are shown for a flat plate or flat slab without spandrels (slab system without
beamns between interior supports and without edge beam). For other end span conditions, the total static moment
M, is distributed as shown in Table 19-1.

End Span Interior Span

H Mo Mo

A A 41

Without Continuity

|

0.52 M, 0.35 Mg

VA’H-T]\ A
€0.26 M “ br,c.t-:s M‘,:{I v
0.70 Mg” design for \arger

Continuity Restored

Figure 19-4 Design Strip Moments

Table 19-1 Distribution of Total Static Moment for an End Span

(1 (2) (3 I (4) ()
Flat Plates and Flat Slabs
Factored Slab Simply Two-Way Slab Monolithic
Moment { Supported on Beam- Without Edge With tdge with Concrete
Concrete or Supported Beam Beam Wall
Masonry Wall Slabs
Interior 0.75 0.70 0.70 0.70 0.65
Negative
Positive 0.63 0.57 0.52 0.50 0.35
Exterlor 0 0.16 0.26 0.30 0.65
Negaiive

13.6.3.6 Special Provision for Load Transfer Between Slab and an Edge Column—For colurmns support-
ing a slab without beams, load transfer directly between the slab and the supporting columns (without interme-
diate load transfer through beams) is one of the more critical design conditions for the flat plate or flat slab
system. Shear strength of the slab-column connection is critical. This aspect of two-way slab design should not
be taken lightly by the designer. Two-way slab systems are fairly “forgiving” of an error in the distributicn or
even in the amount of flexural reinforcement; however, there is little or no forgiveness if a critical error in the
provision of shear strength is made. See Part 16 for special provisions for direct shear and moment transfer at
slab-column connections.
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Section 13.6.3.6 addresses the potentially critical moment transfer between a beamless slab and an edge column.
To ensure adequate shear strength when vsing the approximate end-span moment coefficients of 13.6.3.3, the
1989 edition of the code required that the full nominal strength M, provided by the column strip be used in
determining the fraction of unbalanced moment transferred by the eccentricity of shear (¥, ) in accordance with
11.12.6 {for end spans without edge beams, the column strip is proportioned to resist the total exterior negative
factored moment). This requirement was changed in ACI 318-95. The moment 0.3M,, instead of M, of the
column strip must be used in determining the fraction of unbalanced moment transferred by the eccentricity of
shear. The total reinforcement provided in the column strip includes the additional reinforcement concentrated

over the column fo resist the fraction of unbalanced moment transferred by flexure, YiM,; = v (0.26M,),
where the moment coefficient (0.26) is from 13.6.3.3, and v; is given by Eq. (13-1).

13.6.4 Factored Moments in Column Strips

The amounts of negative and positive factored moments to be resisted by a column strip, as defined in Fig. 19-1,
depends on the relative beam-to-slab stiffness ratio and the panel width-to-length ratio in the direction of analy-
sis. An exception to this is when a support has a large transverse width.

The column strip at the exterior of an end span is required to resist the total factored negative moment in the
design strip unless edge beams are provided.

When the transverse width of a support is equal to or greater than three quarters (3/4) of the design strip width,
13.6.4.3 requires that the negative factored moment be uniformiy distributed across the design strip.

The percentage of total negative and positive factored moments to be resisted by a column strip may be deter-
mined from the tables in 13.6.4.1 (interior negative), 13.6.4.2 (exterior negative) and 13.6.4.4 (positive), or from
the following expressions:

Percentage of negative factored moment at interior support to be resisted by column strip

gyl ¢
= 75 + 30 [%%TZJ[I - ﬁ] (1)

Percentage of negative factored moment at exterior support to be resisted by column strip

anfy tr
= 100 - 10B, + 12B; | ——= |1 - ==
oo o st &
Percentage of positive factored moment to be resisted by column strip
=60 +30| 202 )lys . Lo 3)
4 &

Note: When o5yf, /¢ > 1.0, use 1.0 in above equations. When [, > 2.5, use 2.5 in Eq. (2) above.

For slabs without beams between supports (0 = 0) and without edge beams (B, = 0), the distribution of total
negative moments to column strips is simply 75 and 100 percent for interior and exterior supports, respectively,
and the distribution of total positive moment is 60 percent. For slabs with beams between supports, distribution
depends on the beam-to-slab stiffness ratio; when edge beams are present, the ratio of torsional stiffness of edge
beam to flexural stiffness of slab also influences distribution. Figs. 19-6, 19-7, and 19-8 simplify evaluation of
the beam-to-slab stiffness ratio oy, To evaluate B, stiffness ratio for edge beams, Table 19-2 simplifies calcu-
lation of the torsional constant C.
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Table 19-2 Design Aid for Computing C, Cross-Sectional Constant Defining Torsional Properties

Yo

hy < 4hy ¥z

= ¥ = B NN o
%\\\\:( Hﬁ | \ SN (% NN
e ’ 2 ™ ™ ,.\

\\ ' ; J & () k\ @

X4 bS|
e v v ‘,5
Edge beam (AC| 13.2.4) Use larger value of C computed from (1) or (2)

x*
v 4 5 6 7 8 8 10 12 14 16

12 202 369 592 868 1,118 | 1,538 | 1,900 | 2,557
14 245 452 736 1,096 | 1,529 | 2,024 | 2,566 | 3,709 | 4,738
16 288 534 880 1,325 | 1,871 | 2,510 | 3,233 | 4,861 6,567 ] 8,083

18 330 619 1,024 | 1,554 | 2,212 | 2,996 | 3,900 | 6,013 | 8,397 110,813
20 373 702 1,167 | 1,782 | 2,553 | 3,482 | 4,567 | 7,165 | 10,226 | 13,544
22 416 785 1,312 | 2,011 2,895 | 3,968 | 5233 | 8,317 | 12,055 § 16,275
24 458 869 1456 | 2,240 | 3,236 | 4,454 | 5900 | 9459 | 13,885 | 19,005
27 522 994 1672 | 2,683 | 3,748 | 5,183 | 6,900 | 11,197 | 16,628 | 23,101

30 586 1,119 | 1,888 | 2,926 | 4,260 | 5912 | 7,900 | 12,925 | 18,373 | 27,197
33 650 1,243 | 2,104 | 3,269 | 4,772 | 6,641 8,900 | 14,653 | 22,117 | 31,293
36 714 1,369 | 2,320 | 3,612 | 5284 | 7,370 | 9,900 | 16,381 | 24,860 | 35,389
42 842 1,619 | 2752 | 4,298 | 6,308 | 8,828 | 11,900 | 19,837 | 30,349 ] 43,581
48 970 1,869 | 3,183 | 4,884 | 7,332 | 10,286 | 13,900 ] 23,293 | 35,836 | 51,773
54 1,098 | 2119 | 3,616 | 5670 | 8,356 | 11,744 | 15,900 | 26,749 { 41,325 | 59,965
60 1,226 | 2,369 | 4,048 | 6,356 | 9,380 | 13,202 | 17,900 | 30,205 | 46,813 | 68,157

* Small side of a rectangufar cross-section with dimensions x and y.

13.6.5 Factored Moments in Beams

When a design strip contains bearns between columns, the factored moment assigned to the column strip must
be distributed between the slab and the beam portions of the column strip. The amount of the column strip

factored moment to be resisted by the beam varies linearly between zero and 85 percent as ag €, /¢, varies

between zero and 1.0. When o ¢, /£, is equal to or greater than 1.0, 85 percent of the total column strip
moment must be resisted by the beam. In addition, the beam section must resist the effects of loads applied
directly to the beam, including weight of beam stem projecting above or below the slab.

13.6.6 Factored Moments in Middle Strips

Factored moments not assigned to the column strips must be resisted by the two half-middle strips comprising
the design strip. An exception to this is a middle strip adjacent to and parallel with an edge supported by a wall,
where the moment to be resisted is twice the factored moment assigned to the half middle strip corresponding to
the first row of interior supports (see Fig. 19-1).

13.6.9 Factored Moments in Columns and Walls

Supporting columns and walls must resist any negative moments transferred from the slab system.,
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For interior columns (or walls), the approximate Eg. (13-7) may be used to determine the unbalanced moment
transferred by gravity loading, unless an analysis is made considering the effects of pattern loading and unequal
adjacent spans. The transfer moment is computed directly as a function of span length and gravity loading. For
the more usual case with equai transverse and adjacent spans, Eq. (13-7) reduces to

Mu = O.O?(O.SQLUEZEDZJ (4)

where, qiy = factored live load, psf
¢, = span length transverse to £
£, = clear span length in the direction of analysis

At exterior column or wall supports, the total exterior negative factored moment from the slab system (13.6.3.3)
is transferred directly to the supporting members. Due to the approximate nature of the moment coefficients, it
seems unwarranted to consider the change in moment from face of support to centerline of support; use the
moment values from 13.6.3.3 directly.

Columns above and below the slab must resist the unbalanced support moment based on the relative column
stiffnesses—generally, in proportion to column lengths above and below the slab. Again, due to the approximate
nature of the moment coefficients of the Direct Design Method, the refinement of considering the change in
moment from centerline of slab-beam to top or bottom of column seems unwarranted.

PESIGN AID — DIRECT DESIGN MOMENT COEFFICIENTS

Distribution of the total free-span moment M,, into negative and positive moments, and then into column and
middle strip moments, involves direct application of moment coefficients to the total moment M,. The moment
coefficients are a function of location of span (interior or end), slab support conditions, and type of two-way slab
system. For design convenience, moment coefficients for typical two-way slab systems are given in Tables 19-3
through 19-7. Tables 19-3 through 19-6 apply to flat plates or flat slabs with differing end support conditions.
Table 19-7 applies to two-way slabs supported on beams on all four sides. Final moments for the column strip and
the middle strip are directly tabulated.

Table 19-3 Design Moment Coefficients for Flat Plate or Flat Slab Supported Directly on Columns

- End Spon J“""L Intarior Span ‘L*"I'
O ©) ® ® ®
End Span Interior Span
(1) () 3 (4) (5)
Slab Moments Exterior Positive First Interior Positive Interior
Negative Negative Negative
Total Moment 0.26M,, 0.52M, 0.70M, 0.35M, 0.65M,
quumn Stfip 0.26M, 0.31M, 0.53M, 0.21M, 0.49M,,
Middle Strip 0 0.21M, 0.17M, 0.14M, 0.16M,

Note: All negative moments are at face of support.
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The moment coefficients of Table 19-4 (flat plate with edge beams) are valid for f§; 2 2.5. The coefficients of
Table 19-7 (two-way beam-supported slabs) apply for &g, /€ > 1.0and §; 22.5. Many practical beam sizes

will provide beam-to-slab stiffness ratios such that 0f1£2 /£ and B, will be greater than these limits, allowing
moment coefficients fo be taken directly from the tables, without further consideration of stiffnesses and interpo-

lation for moment coefficients. However, if beams are present, the two stiffness parameters o.¢ and B, will
need to be evaluated. For two-way slabs, and for E.p, = E., the stiffness parameter ¢4 is simply the ratio of the
moments of inertia of the effective beam and slab sections in the direction of analysis, op) = Iy/lg, as illustrated
in Fig. 19-6. Figures 19-7 and 19-8 simplify evaluation of the 0tf; term.

Table 19-4 Design Moment Coefficients for Flat Plate or Flat Slab with Edge Bearns

L}
End Spon I J_ Intarior Spon ]

@ ® ® ®
End Span Interior Span
{1) 2) (3) (4) (5)

Slab Moments Exterior Positive First Interior Paositive Interior

Negative Negative Negative
Total Moment 0.30M, 0.50M; 0.70M, 0.35M, 0.65M,
Column Strip 0.23M, 0.30M, 0.53M, 0.21M, 0.49M,

Middle Strip 0.07M, 0.20M, 0.17Mg 0.14M, 0.16M,

Notes: (1) All negative moments are at face of supporl.
(2) Torsional stifiness of edge beamn is such that B, > 2.5, For values of B, less than 2.5, exterior

negative column strip moment increases to (0.30 - 0.03 B )M,

For Egp, = Eg, relative stiffness provided by an edge beam is reflected by the parameter 3, = C/2I,, where I is
the moment of inertia of the effective slab section spanning in the direction of #; and baving a width equal to ¢;,
ie, I = €2h3/12. The constant C pertains to the torsional stiffness of the effective edge beam cross-section. It
is found by dividing the beam section into its component rectangles, each having a smaller dimension x and a
larger dimension y, and by summing the contributions of all the parts by means of the equation:

3
C = 2(1 . 0'33"] (-"—31] (5)

The subdivision can be done in such a way as to maximize C. Table 19-2 simplifies calculation of the torsional
constant C.
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Table 19-5 Design Moment Coefficients for Flat Plate or Flat Slab with End Span integral with Wall

Erd Spon J+[_ Interior Span I‘I
@ ® ® ®
End Span Interior Span
(1) 2) (3) (4) (5)
Slab Moments Exterior Positive First Interior Positive Interior
Negative Negative Negative
Total Moment 0.65M, 0.35M, 0.65M, 0.35M, 0.65M,,
Golumn Strip 0.49M, 0.21M, 0.49M,, 0.21M, 0.49M,
Middle Strip 0.16M, 0.14M, 0.16M, 0.14M, 0.16M,

Note: Al negative moments are at face of support.

Table 19-6 Design Moment Coefficients for Flat Plate or Flat Slab with End Span Simply Supported on Wall

I

IT

11,

==

D End Spon LJ_ Interior Spon LJ_
© @ ® @ ®
End Span Interior Span
(1) (2) (3} 4) (5)
Slab Moments Exterior Positive First Interior Positive Interior
Negative Negative Negative
Total Moment 0 0.63M, 0.75M, 0.35M, 0.65M,
Column Strip 0 0.38M, 0.56M, 0.21M, 0.49M,
Middle Strip 0 0.25M, 0.19M, 0.14M, 0.16M,

Note: All negative moments are at face of support.
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Tabfe 19-7 Design Moment Coefficients for Two-Way Beam-Supported Slab

% T =7 cZacw
4 End Span -‘Lb-- Interior Spon
® ©) ©) ® ®
End Span interior Span
(1) (2) (3) (4) (5}
Span Slab and Beam Exterior First Interior Interior
Ratio Moments Negative Positive Negative Positive Negative
Total Moment 0.16M, 0.57M, 0.70M, 0.35M, 0.65M,
Column Strip Beam | 0.12M, 0.43M, 0.54M, 0.27M, 0.50M,,
0.5 Slab 0.02M, 0.08M, 0.09M, 0.05M, 0.09M,
Middle Strip 0.02M, 0.06M, 0.07M, 0.03M, 0.06M,
Column Strip  Beam 0.10Mg 0.37M, 0.45M, 0.22Mg 0.42M,
1.0 Slab 0.02M, 0.06M, 0.08M, 0.04M, 0.07M,
Middle Strip 0.04M, 0.14M, 0.17M, 0.09M, D.16M,
Column Strip  Beam 0.06M,, 0.22M, 0.27M, 0.14M, 0.25M,
2.0 Slab 0.01M, 0.04M,, 0.05M, 0.02Mq 0.04M,
Middle Strip 0.09M, 0.31M, 0.38M;, 0.19M, 0.36M,
Notes: (1) ANl negative moments are at face of suppont.

(2} Torsional stiffness of edge beam is such that B; 22.5

(3) anésity 2 1.0
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Example 19.1—Two-Way Slab without Beams Analyzed by the Direct Design Method

Use the Direct Design Method to determine design moments for the flat plate slab system in the direction shown,

for an intermediate floor. I

Story height = 9f1
Column dimensions = 16 x 16in.
Lateral loads to be resisted by shear walls

7/
Z

]
Z

AR
+

18'-0"

No edge beams T \§ ig'-0"
Partition weight = 20 psf k‘k‘ B |
S _ B NN }
Service live load = 40 psf , \ ' g0
f. = 4,000 psi, normal weight concrete 1 \ 1
fy = 60,000 psi - =
design
Also determine the reinforcement and shear requirements at Strip
an exterior column. 140" 140" 140"
¥
Code
Calculations and Discussion Reference
1. Preliminary design for slab thickness h:
a. Control of deflections.
For slab systems without beams (flat plate), the minimum overall thickness h 9532
with Grade 60 reinforcement is (see Table 18-1): Table 9.5(c)
h=% = 2% _ 66700 Uset =7in.
30 30
where £, is the length of clear span in the long direction = 216-16 = 200 in.
This is larger than the 5 in. minimum specified for slabs without drop panels. 9.5.3.2(a)
b.  Shear strength of slab.
Use an average effective depth, d = 5.75 in. (3/4-in. cover and No. 4 bar)
Factored dead load, gpy = 1.2 (87.5 + 20) = 129 psf
Factored live load, Quu = 1.6 X 40 = 64 psf
Total factored load, qQu = 193 psf
Investigation for wide-beam action is made on a 12-in. wide strip at a distance d from 11.12.1.1
the face of support in the long direction (see Fig.19-9).
Vy = 0.193 x 7.854 = 1.5 kips
V. = 24, b,d Eq. (11-3)
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Code
Example 19.1 (cont’d) Calculations and Discussion Reference

ta'- 0"

|2I.75"
= !

N - 0"
21.75
& :

|
e T

_{ av. d/2 = 2.88"

7.854" | av.d =5.75"

i
\?_ of panei

Figure 19-9 Critical Sections for One-Way and Two-Way Shear

ey |

-

|
!
1
I
f
!
I
}
I
|
[

- 244, 00? 8(01)2 X 5.75 = 873 kips

OV, = 0.75 x 873 = 6.6kips > V, = 1.5kips O.K.

Since there are no shear forces at the centerline of adjacent panels (see Fig. 19-9), the
shear strength in two-way action at d/2 distance around a support is computed as follows:

Vy =0.193 {(18 x 14) - 1.812)] = 48.0 kips

Ve = 4@ b, (for square columns) Eq. (11-35)

_ 444,000 x (4% 21.75)x5.75

= 126.6 kips
1,000

V,=48.0kips < ¢V, =0.75 x 126.6 kips = 95.0 kips OK.

Therefore, preliminary design indicates that a 7 in. slab is adequate for control of
deflection and shear strength,

2. Check applicability of Direct Design Method: 13.6.1
There is a minimurn of three continuous spans in each direction 136.1.1
Long-to-short span ratio is 1.29 < 2.0 13.6.1.2
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Code

Example 19.1 (cont’d) Calculations and Discussion Reference
Successive span lengths are equal 13.6.1.3
Columns are not offset 13.6.1.4
Loads are uniformly distributed with service live-to-dead load ratio of 0.37 < 2.0 13.6.1.5
Slab system is without beams 13.6.1.6

3. Factored moments in slab:

a. Total factored moment per span. 13.6.2
Quf2ln’
M, = —“—éi Eq. (13-4)
2
_ 0193 x 14 x 16.67° _ 93.6 ft -Kips
8
b.  Distribution of the total factored moment M,, per span into negative and positive 13.6.3
moments, and then into column and middle strip moments. This distribution involves 13.6.4
direct application of the moment coefficients to the total moment M, Referring to 13.6.6

Table 19-3 (flat plate without edge beams),

Total Moment Column Strip Moment } Moment {ft-kips)in Two
(ft-kips) (ft-kips) Half-Middle Strips*

End Span:

ExteriorNegative 026M, = 24.3 026M, = 24.3 0

Positive 052M, = 487 031M, = 29.0 021M, = 197

Interior Negative 070M, = 65.5 053M, = 49.6 017M, = 159
Interior Span:

Positive 0.35M, = 32.8 021M, = 197 014M, = 13.1

Negative 0.65M, = 60.8 049M, = 459 016M, = 15.0

*That portion of the tolal moment M, not resisted by the column strip is assigned to the two hall-middle strips.

Note: The factored moments may be modified by 10 percent, provided the total factored 13.6.7
static moment in any panel is not less than that computed from Eq. (13-4). This modifi-

cation is omitted here.
4. Factored moments in columns: 13.6.9

a. Interior columns, with equal spans in the direction of analysis and (different) equal
spans in the transverse direction.

M, = 007 (05qL,¢5007) Eq. (13-7)
= 0.07 (0.5 X 1.6 X 0.04 X 14 X 16.672) = 8.7 fi-kips
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Code
Example 19.1 (cont’d) Calculations and Discussion Reference

With the same column size and length above and below the slab,

8.7

M, = =L
2

[

= 4.35 ft-kips

This moment is combined with the factored axial load (for each story) for design of
the interior columns.,

b. Exterior columns.

Total exterior negative moment from slab must be transferred directly to the col-
umns: My = 24.3 ft-kips. With the same column size and length above and below
the slab,

M, = 3‘;;3 = 12.15 ft-kips

This moment is combined with the factored axial load (for each story) for design of
the exterior column.

5. Check slab flexural and shear strength at exterior column

a. Total flexural reinforcement required for design strip:

i. Determine reinforcement required for sirip moment M,, = 24.3 fit-kips
Assume tension-controlled section (¢ =0.9) 832
14 x 12 .
Column strip width b = = B4 in. 13.2.1
M . .
R, = v 243 x 12,000 = 117 psi

obd? 0.9 x 84 x 5.757

5 0851 (1_ L 2R,,’}
L, J 0.85f;
_0ssxa( [TaxTT ) | (om0
60 085 x 4,000

A, = pbd = 0.0020 x 84 x 575 = 0.96in*

Pmin = 0.0018 13.3.1

19-18
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Example 19.1 (cont’d) Calculations and Discussion

Code
Reference

ii.

Min. A, = 0.0018 x 84 x 7 = 1.06in.” > 0.96in.’

Number of No. 4 bars =

1—'-03 = 5.3, say 6 bars
0.2

Maximum spacing s, = 2h = 14in. < 18in.

34
Number of No.4 bars based on Sy = vl 6

Verify tension-controlled section:

_ A, (6x02) x 60
T 0.85fb  0.85 x 4 x 84

= 025in.

a 0.25
2 22 029in.
B, 085 "

Et = (%i%)dt - 0-003

o]
It

= 0.003 5.75 - 0.003 = 0.057 > 0.005
0.29

Therefore, section is tension-controlled.

Use 6-No. 4 bars in column strip.

Check slab reinforcement at exterior column for moment transfer

between slab and column

Portion of unbalanced moment transferred by flexure = yM

From Fig. 16-13, Case C:
d . .
bl = C] + 5 = 16 + — = 18.88 1n.

b, =c, +d = 16 + 575 = 21.75in.

1 1

Yt = = = (.62

1+ (2/3) b /by 1+ (2/3118.88/21.75

19-19
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Code
Example 19.1 (cont’d) Calculations and Discussion Reference

veM, = 0.62 x 243 = 15.1 ft-kips
Note that the provions of 13.5.3.3 may be utilized; however, they are not in this example.

Assuming tension-controlled behavior, determine required area of reinforcement for
YeM, = 15.1 ft-kips:

Effective slab width b=c3+ 3h = 16 + 3 (7) =37 in. 13.53.2
. M“2 _ _I51x 12,0002 - 165 psi
obd 0.9 x 37 x 5.75
o= 085f [, [, _ 2Rn,
f, 0.85f7
_ 085x4 I_ﬁ_ 2 % 165 - 0.0028
60 0.85 x 4000

A, = 0.0028 x 37 x 575 = 0.60 in.?

Min. A; = 0.0018 x 37 x 7 = 0.47in? < 0.60 in?

0.
Number of No. 4 bars = 0—2— =3

Verify tension-controlled section:

At
a= ”I, = (3 x 0.2) x 60 = 0.29 in.
0.85tb 0.85 x 4 x 37

e=2 =98 _oa4in
B, 085
g, = (%%%) 5.75 - 0.003 = 0.048 > 0.005 10.3.4
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Code
Example 19.1 (cont’d) Calculations and Discussion Reference

Therefore, section is tension-controlled.

Provide the required 3-No. 4 bars by concentrating 3 of the column strip
bars (6-No. 4) within the 37 in. slab width over the column. For symmetry,
add one additional No. 4 bar outside of 37-in. width.

Note that the column strip section remains tension-controlled with the
addition of 1-No. 4 bar.

iii. Determine reinforcement required for middle strip.

Since all of the moment at exterior columns is transferred o the column strip, provide
minimum reinforcement in middie strip:

Min. A, = 0.0018 x 84 x 7 = 1.06in.?

1.06
Number of No. 4 bars = —— = 5.3, say 6

0.2
Maximum spacing s_.. = 2h = 14in. < 18in. 13.3.2
Number of No. 4 bars based on S5, = % =6
Provide No. 4 @ 14 in. in middle strip.
b. Check combined shear stress at inside face of critical transfer section: 11.126.1

For shear strength equations, see Part 16.

Vu ’YVMUCAB

vy, = -

! AC JC

Factored shear force at exterior column:

Vv, = 0.193 [(14 X 9.667) — [33_881-%2-1-73)] — 25.6 kips

When the end span moments are determined from the Direct Design Method, the fraction 13.6.3.6
of unbalanced moment transferred by eccentricity of shear must be

03M, = 0.3 x 93.6 = 28.1 ft-kips.

v, =1-7; =1-062 =038 Eq. (11-3)
19.21



Code
Example 19.1 (cont’d) Calculations and Discussion Reference

From Fig. 16-13, critical section propeties for edge column bending perpendicular to
edge (Case C):

A, = (2b; + by)d = [(2 x 18.88) + 21.75] x 5.75 = 342.2in?

Jo _ 2b2d (b, + 2by) +d° (2b) + by)
CAB B 6b1

2(18.88)°(5.75) [18.88 + (2 x 21.75)] + 5.75° [(2 x 18.88) + 21.75]

6 x 18.88
= 2,357 in3
, = 25600 038 x 281 x 12,000
3422 2,357

=748 +54.4=129.2 psi

Allowable shear stress ¢v, = 044/f. = 0.75 x 44/4,000 = 189.7 psi > v, O.K. 11.12.6.2
Column Strip - 7°-0°
3I_1I
oY

50"

2-No. 4 @12* 3-No. 4 @ 12" 2-No. 4 @12°

\/ 7\
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Example 18.2—Two-Way Slab with Beams Analyzed by the Direct Design Method

Use the Direct Design Method to determine design moments for the slab system in the direction shown, for an

intermediate floor.

- ;;dh — ,.‘
| \ii N -
Story height = 12 ft T ﬂ\ - 17-6"
N . - . L
Edge beam dimensions = 14 X 27 in. “\ 5‘,\\\ B

N
Interior beam dimensions = 14 X 20in. = E*"Qg:“m =1 1
Column dimensions = 18 X 18 in. L \ij\ ‘ e ¢
Slab thickness = 6 in. 5 E \;;\ .
Service live load = 100 psf A =_===_=,3p 4
N s
s | \g 17-6"
v
f, = 4,000 psi (for all members), ——= -———.—,rf:-‘t\. — 5 !
normal weight concrete ; design sirip
fy = 60,000 psi
220" | 22-0"
T
Code
Calculations and Discussion Reference
953

1. Preliminary design for slab thickness h:
Control of deflections.

With the aid of Figs. 19-6, 19-7, and 19-8, beam-to-slab flexural stiffness ratio ay is
computed as follows:

NS edge beams:

¢ =141 in.
a3 _ 2 _ 45
h 6
b 14
LA X &
h 6

From Fig. 19-8,f = 1.47

16-23



Code
Example 19.2 (cont’d) Calculations and Discussion Reference

O = S22 = 2 13.0

- (%) [361)3 (1.47) = 13.30

EW edge beams:

£, = ——-17‘5; 12, % = 114in.

3
14 Y27
o = [m)[?] (1.47) = 1645

NS interior beams:

¢y = 22ft = 264in.
2222333
h 6

b = — = 233
h

From Fig. 19-7,f = 1.61

ap = (%J(%T (147) = 1645

EW interior beams:

|
i
i
i
i
!
|
!

£, = 17.5ft=210in.

a = (2‘—1“6](369]3 (L61) = 3.98

Since o > 2.0 for all beams, Eq. (9-13) will control minimum thickness. 8.5.3.3
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Code

ol 2 3.98 x 210%

Extericr Panel:
s = 3.16 £y = 2641in.
gy = 1645 £ = 2101n.

2 2
opfp” _ 316 X247 o 02<03<50 OK.

ol 16.45 x 2102
Therefore, use of Direct Design Method is permitted.

19-25

Example 19.2 (cont’d) Calculations and Discussion Reference
Therefore,
f
£, [0.8 + b J
h = 200,000 Eq. (9-12)
36 + 9P
246| 08 + 60,000
200,000
= =57
36 + 9(1.28)
where
B = clear span in the long direction _ 20.5 _ 198
clear span in the short direction 16 '
¢, = clear span in long direction measured face to face of columns = 20.5 ft =2461n.
Use 6 in. slab thickness
2. Check applicability of Direct Design Method: 13.6.1
There is a minimum of three continuous spans in each direction 13.6.1.1
Long-to-short span ratio is 1.26 < 2.0 13.6.1.2
Successive span lengths are equal 13.6.1.3
Columns are not offset 13.6.1.4
Loads are uniformly distributed with service live-to-dead ratio of 1.33 < 2.0 13.6.1.5
Check relative stiffness for slab panel: 13.6.1.6
Interior Panel:
Qs = 3.16 32 = 2641n.
Cley = 3.98 f] = 210in.
2 2
opfy” _ 316X 2647 o5 02<125<50 OK. Eq. (13-2)



Code

Example 19.2 (cont’d) Calculations and Discussion Reference
3. Factored moments in slab:

Total factored moment per span 13.6.2
A ight of b i —14x}4x@—93sf

verage weight of beams stem = —77 n p

. 6
Weight of slab = o x 150 = 75 psf
w, = 1.2(75 + 9.3} + 1.6(100) = 261 psf Eq. (9-2)
£, =175 - 18 = 16ft
12
2
M, = qufgfn Eq. (13-4)
2
. 0.261 x ;2 x 16 = 183.7 ft-kips
Distribution of moment into negative and positive moments:

Interior span: 13.6.3.2
Negative moment = 0.65 M, = 0.65 x 183.7 = 119.4 ft-kips

Positive moment = 0.35M = 0.35 x 183.7 = 64.3 ft-kips

End span: 13.6.3.3
Exterior negative = 0.16 M, = 0.16 x 183.7 = 29.4 ft-Kkips

Positive = 0.57 M, = 0.57 x 183.7 = 104.7 ft-kips

Interior negative = 0.70 M, = 0.7 x 183.7 = 128.6 ft -kips

Note: The factored moments may be modified by 10 percent, provided the total 13.6.7

factored static moment in any panel is not less than that computed from Eq. (13-3).

This modification is omitted here.

13.6.4

4. Distribution of factored moments to column and middle strips:

Percentage of total negative and positive moments to column strip.
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Example 19.2 (cont’d) Calculations and Discussion Reference
At interior support:
75 + 30[“—?5—%J(1 - i—ZJ = 75 +30(1 - 126) = 67% Eq. (1)
1 1

where o.;; was computed earlier to be 3.16 (see NS interior beam above)

At exierior support:

100 — 10B, + 12B [Ml]{1 - E—ZJ
4 £y

where

B, = = = 1188 _ g
20, 2x 4752

100 - 10 (1.88) + 12 (1.88) (1- 1.26) = 75% Eq. (2)

3
=4 g5t
12

C is taken as the larger value computed (with the aid of Table 21-2) for the torsional
member shown below.

, [21"(hw$ 4h¢)
r‘ "
ATy he¢=6
\ .~ Bl
tarsional 7 5+ | hw=2)
member —/\ F
14"
¥ = 14in. Xo = 6in. X; = 14in. %o = 6in.
¥y = 21in. yo = 35in. yy = 27in. yo = 21in.
Cq = 11,141 in4 Cy = 2248in# Cqi = 16,628in.4 C> = 1240in4
IC = 11,141 + 2248 = 13,389in4 ¥C = 16,628 + 1240 = 17,868in4
Positive moment:
60 + 30 [9?—“](1‘5 - i—z} = 60 +30(1.5-126) = 67% Eq. (3)
1 1
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Example 19.2 (cont’d) Calculations and Discussion Reference
Factored moments in column strips and middle strips are surnmarized as follows:
Factored Column Strip Moment (ftkips) in
Moment Two Half-Middle
{ft-Kips) Percent Momenf Strips2
(ft-kips)
End Span:
Exterior Negative 29.4 75 221 7.3
Positive 104.7 67 701 34.6
Interior Negative 128.6 67 86.2 42.4
interior Span:
Negative 118.4 67 80.0 394
Positive 64.3 67 43.1 21.2

' Since ayey1¢y > 1.0, beams must be proportioned to resist 85 percent of column sirip moment per

13.6.5.1.

?  That portion of the factored moment not resisted by the column strip is assigned to the half-middie strips.

5. Factored moments in columns: 13.6.9

a. Interior columns, with equal spans in the direction of analysis and (different) 13.6.9
equal spans in the transverse direction.

M, = 007 (05qu¢5¢,7) Eq. (13-7)

= 0.07 (0.5 X 1.6 X 0.1 X 22 X 162) = 31.5 fi-kips

With the same column size and length above and below the slab,
31 .
M, = -—:2—5 = 15.8 ft-kips

This moment is combined with the factored axial load (for each story) for design of
the interior columns.

b. Exterior columns.

The total exterior negative moment from the slab beam s transferred to the exterior
columns; with the same column size and length above and below the slab system:

9.4
M, = -2——2— = 14.7 ft-kips

19-28




Code
Example 19.2 (cont’d) Calculations and Discussion Reference

6. Shear strength:
a. Beams.
Since wgyf4 /€, > 1 for all beams, they must resist total shear (by, = 14in.,d=17in.).  13.6.8.1

Only interior beams will be checked here, because they carry much higher shear
forces than the edge beams.

' £,=22'0" .
r ¥ o N Y n—l
[
0j2 Loty 4f2 \
* '1‘/C T
£=17-8" < > NS beams
—;/ 1 ¢ %
VU=§quE1?1=qL4L
Y
49 )/ 4 EW beams
1 £y 8 ?
V, =—q, =12 £y —2) L
/ =555 + QU( 2 1) >
vy
=i‘f—1(f1 £ 205 -28y) =q"4£‘ (225 - £y)
NS Beams:
2 2
0.261 (17.5
v, = Wi _ 026 (U757 _ 20,0 kips
4 4
OV, = ¢24F byd Eq. (11-3)

= 0.75 X 244,000 x 14 x 17/1,000 = 22.6 kips > V,
Provide minimum shear reinforcement per 11.5.5.3. 11.6.5.1

EW Beams:

qufy 2¢; — £y)

V,
u 4

0261 x 1752 x 22) - 17.5
= 6 [(4 ) ] = 30.3kips > ¢V, = 22.6kips N.G.
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Example 19.2 (cont’d) Calculations and Discussion Refelgzg:
Reqguired shear strength to be provided by shear reinforcement:
V, = (Vy - ¢V, )7¢ = (303 - 22.6)/0.75 = 10.3 kips |
b. Slabs {(by=12in.,,d=5in.). 13.6.8.4

qy = (1.2 x 75) + (1.6 x 100) = 250 psf

v, = quzel _ 025 >2< 175 _ 52 kips

OVe = $2412 byd

0.75 x 24/4,000 x 12 x 5/1,000 = 5.7 kips > V, = 2.2kips O.K.

Shear strength of slab is adequate without shear reinforcement.

7. Edge beamns must be designed to resist moment not transferred to exterior columns by
interior beams, in accordance with 11.6.
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Two-Way Slabs—
Equivalent Frame Method

GENERAL CONSIDERATIONS

The Equivalent Frame Method of analysis converts a three-dimensional frame system with two-way slabs into
a series of two-dimensional frames (slab-beams and columns), with each frame extending the full height of the
building, as illustrated in Fig. 20-1. The width of each equivalent frame extends to mid-span between column
centerlines. The complete analysis of the two-way slab system for a building consists of analyzing a series of
equivalent interior and exterior frames spanning longitudinally and transversely through the building. For grav-
ity loading, the slab-beams at each floor or roof (level) may be analyzed separately, with the far ends of attached
columns considered fixed (13.7.2.5).

The Equivalent Frame Method of elastic analysis applies to buildings with columns laid out on a basically
orthogonal grid, with column lines extending longitudinally and transversely through the building. The analysis
method is applicable to slabs with or without beams between suppors.

The Equivalent Frame Method may be used for lateral load analysis if the stiffnesses of frame members are
modified to account for cracking and other relevant factors. See discussion on 13.5.1.2 in Part 18.

PRELIMINARY DESIGN

Before procecding with Equivalent Frame analysis, a preliminary slab thickness h needs to be determined for
control of deflections, according to the minimum thickness requirements of 9.5.3. Table 18-1 and Fig. 18-3 may
be used to simplify minimum thickness computations. For slab systems without beams, it is advisable at this
stage of design (o check the shear strength of the slab in the vicinity of columns or other support locations,
according to the special provisions for slabs of 11.12. See discussion on 13.5.4 in Part 18.

13.7.2 Equivalent Frame

Application of the frame definitions given in 13.7.2, 13.2.1, and 13.2.2 is illustrated in Figs. 20-1 and 20-2.
Some judgment is required in applying the definitions given in 13.2.1 for slab systems with varying span lengths
along the design strip. Members of the equivalent frame are slab-beamns and torsional members (transverse
horizontal members) supported by columns (vertical members). The torsional members provide moment trans-
fer between the slab-beams and the columns. The equivalent frame members are iltustrated in Fig. 20-3. The
initial step in the frame analysis requires that the flexural stiffness of the equivalent frame members be determined.
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Figure 20-1 Equivalent Frames for 5-Story Building

13.7.3 Slab-Beams

Common types of slab systems with and without beams between supports are illustrated in Figs. 20-4 and 20-35.
Cross-sections for determining the stiffness of the slab-beam members K, between support centerlines are
shown for each type. The equivalent slab-beam stiffness diagrams may be used to determine moment distribu-
tion constants and fixed-end moments for Equivalent Frame analysis.

Stiffness calculations are based on the following considerations:

a. The moment of inertia of the slab-beam between faces of supports is based on the gross cross-sectional
area of the concrete. Variation in the moment of inertia along the axis of the slab-beam between
supports must be taken into account {13.7.3.2).

b. A supportis defined as a column, capital, bracket or wall. Note that a beam is not considered a support-
ing member for the equivalent frame (R13.7.3.3).

c. The moment of inertia of the slab-beam from the face of support to the centerline of support is assumed
equal to the moment of inertia of the slab-beam at the face of support, divided by the quantity (1 —cgfty )2
(13.7.3.3).

The magnification factor 1/(1 - ¢, f£2)2 applied to the moment of inertia between support face and support
centerline, in effect, makes each slab-beam at least a haunched member within its length. Consequently, stiff-
ness and carryover factors and fixed-end moments based on the usual assumptions of uniform prismatic mem-
bers cannot be applied to the slab-beam members.
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Figure 20-2 Design Strips of Equivalent Frame

Tables Al through A6 in Appendix 20A at the end of this chapter give stiffness coefficients, carry-over factors,
and fixed-end moment (at left support) coefficients for different geometric and loading configurations. A wide
range of column size-to-span ratios in both longitudinal and transverse directions is covered in the tables. Table
Al can be used for flat plates and two-way slabs with beams. Tables A2 through A5 are intended to be used for
flat slabs and waffle slabs with various drop (solid head) depths. Table A6 covers the unusual case of a flat plate
combined with a flat slab. Fixed-end moment coefficients are provided for both uniform and partially uniform
loads. Partial load coefficients were developed for loads distributed over a length of span equal to 0.2¢;. How-
ever, loads acting over longer portions of span may be considered by summing the effects of loads acting over
each 0.2¢, interval. Forexample, if the partial loading extends over 0.6¢;, then the coefficients corresponding
to three consecutive (.2¢) intervals are to be added. This provides flexibility in the arrangement of loading. For
concentrated loads, a high intensity of partial loading may be considered at the appropriate location, and as-
sumed to be distributed over 0.2¢,. For parameter values in between those listed, interpolation may be made.
Stiffness diagrams are shown on each table. With appropriate engineering judgment, different span conditions
may be considered with the help of information given in these tables.
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13.7.4 Columns

Common types of column end support conditions for slab systems are illustrated in Fig. 20-6. The column
stiffness is based on a height of column £, measured from the mid-depth of the slab above to the mid-depth of
the slab below. The column stiffness diagrams may be used to determine column flexural stiffness, K. The
stiffness diagrams are based on the following considerations:

a.  The moment of inertia of the column outside the slab-bearn joint is based on the gross cross-sectional
area of the concrete, Variation in the moment of inertia along the axis of the column between slab-
beam joints is taken into account. For columns with capitals, the moment of inertia is assurned to vary
linearly from the base of the capital to the bottom of the slab-beam (13.7.4.1 and 13.7.4.2).

b.  The moment of inertia is assumed infinite (I = o) from the top to the bottom of the slab-beam at the
joint. As with the slab-beam members, the stiffness factor K, for the columns cannot be based on the
assumption of uniform prismatic members (13.7.4.3).

Table A7 in Appendix 20A can be used to determine the actual column stiffnesses and carry-over factors.
13.75 Torsional Members

Torsional members for common slab-beam joints are illustrated in Fig. 20-7. The cross-section of a torsional
member is the largest of those defined by the three conditions given in 13.7.5.1. The governing condition (a),
(b), or {c) is indicated below each illustration in Fig. 20-7.
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The stiffness K; of the torsional member is calculated by the following expression:

9EC

A\ (1}
52 [1 - (Cz/fz)]?’

KI:E

where the summation extends over torsional members framing into a joint: two for interior frames, and one for
exterior frames.

The term C is a cross-sectional constant that defines the torsional properties of each torsional member framing
into a joint:

3
C=32 [1 - 0.63 (5H L3 4 @)
y 3

where x is the shorter dimension of a rectangular part and y is the longer dimension of a rectangular part.

The value of C is computed by dividing the cross section of a torsional member into separate rectangular parts
and summing the C values for the component rectangles. It is appropriate to subdivide the cross section in a
manner that results in the largest possible value of C. Application of the C expression is illustrated in Fig. 20-8.

If beams frame into the support in the direction moments are being determined, the torsional stiffness K, given
by Eq. (1) needs to be increased as follows:

Ktlsb

K, =
ta Is
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where Kia = increased torsional stiffness due to the parallel beam (note paralle}l beam shown in Fig. 20-3)

I; = moment of inertia of a width of slab equal to the full width between panel centerlines, #,,
excluding that portion of the beam stem extending above and below the slab (note part A in
Fig. 20-3).

503

12

moment of inertia of the slab section specified for I; including that portion of the beam
stem extending above and below the slab (for the parallel beam illustrated in Fig. 20-3, Iy,
is for the full tee section shown).
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Figure 20-7 Torsional Members
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Equivalent Columns (R13.7.4)

With the publication of ACI 318-83, the equivalent column concept of defining a single-stiffness element con-
sisting of the actual columns above and below the slab-beams plus an attached transverse torsional member was
eliminated from the code. With the increasing use of computers for two-way slab analysis by the Equivalent
Frame Method, the concept of combining stiffnesses of actual columns and torsional members into a single
stiffness has lost much of it attractiveness. The equivalent column was, however, retained in the commentary
until the 1989 edition of the code, as an aid to analysis where slab-beams at different floor levels are analyzed
separately for gravity loads, especially when using moment distribution or other hand calculation procedures for
the analysis. While the equivalent column concept is still recognized by R13.7 4, the detailed procedure con-
tained in the commentary since the ‘83 edition for calculating the equivalent column stiffness, Kq, was deleted
from R13.7.5 of the ‘95 code.

Both Examples 20.1 and 20.2 utilize the equivalent column concept with moment distribution for gravity load
analysis.

The equivalent column concept modifies the column stiffness to account for the torsional flexibility of the slab-
to-column connection which reduces its efficiency for transmission of moments. An equivalent column is illus-
trated in Fig. 20-3. The equivalent column consists of the actnal columns above and below the slab-beams, plus
“attached” torsional members on both sides of the columns, extending to the centerlines of the adjacent panels,
Note that for an edge frame, the attached torsional member is on one side only. The presence of parallel beams
will also influence the stiffness of the equivalent column.

The flexural stiffness of the equivalent column K¢ is given in terms of its inverse, or flexibility, as follows:
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+
K, =K. 3K,

For computational purposes, the designer may prefer that the above expression be given directly in terms of
stiffness as follows:

SK . x 2K,
Kee = —e 2t
2K, + 2K,

Stiffnesses of the actual columns, K, and torsional members, K; must comply with 13.7.4 and 13.7.5.

After the values of K, and K, are determined, the equivalent colurmn stiffness Kgc is computed. Using Fig. 20-3

for illustration,
Ko = (K¢ + Kgp) (Kip + Kin)
Kg +Kgp + Ky + K
where K = flexural stiffness at top of lower column framing into joint,
Kep = flexural stiffness at bottom of upper column framing into joint,

K, = torsional stiffness of each torsional member, one on each side of the column, increased
due to the paralle! beam (if any).

13.7.6 Arrangement of Live Load

In the usual case where the exact loading pattern is not known, the maximum factored moments are developed
with loading conditions illustrated by the three-span partial frame in Fig. 20-9, and described as follows:

a.  When the service live load does not exceed three-quarters of the service dead load, only loading pattern
(1) with full factored live load on all spans need be analyzed for negative and positive factored mo-
ments,

b. When the service live-to-dead load ratio exceeds three-quarters, the five loading patterns shown need
to be analyzed to determine all factored moments in the slab-beam members. Loading patterns (2)
through (5) consider partial factored live loads for determining factored moments. However, with
partial live loading, the factored moments cannot be taken less than those occurring with full factored
live load on all spans; hence load pattern (1) needs to be included in the analysis.

For slab systems with beams, loads supported directly by the beams (such as the weight of the beam stem or a
wall supported directly by the beams) may be inconvenient to include in the frame analysis for the slab toads, wy
+ w,. An additional frame analysis may be required with the beam section designed to carry these loads in
addition to the portion of the slab moments assigned to the beams.
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Figure 20-9 Partial Frame Analysis for Vertical Loading

13.7.7 Factored Moments

Moment distribution is probably the most convenient hand calculation method for analyzing partial frames
involving several continuous spans with the far ends of upper and lower columns fixed. The mechanics of the
method will not be described here, except for a brief discussion of the following two points: (1) the use of the
equivalent column concept to determine joint distribution factors and (2) the proper procedure to distribute the

equivalent column moment obtained in the frame analysis to the actual columns above and below the slab-beam
joint. See Examples 20.1 and 20.2.

A frame joint with stiffness factors K shown for each member framing into the joint is illustrated in Fig. 20-10.
Expressions are given below for the moment distribution factors DF at the joint, nsing the equivalent column
stiffness, Kqc. These distribution factors are used directly in the moment distribution procedure.

Equivalent colurmn stiffness,

_ XK, x ZK

K.. =
€K, + 2K,
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- (Kg +Kp) K, +K})

Slab-beam distribution factor,

DF (span 2-1) = Kp)
Kp1 + Kpy + Ke.
DF (span 2-3) = Kpo

Kb] + sz + KEC
Equivalent column distribution factor (unbalanced moment from slab-beam),

DF = Kec
Kbl + sz + KCC

The unbalanced moment determined for the equivalent column in the moment distribution cycies is distributed
to the actual columns above and below the slab-beam in proportion to the actual column stiffhesses at the joint,
Referring to Fig. 20-10:

Portion of unbalanced moment to upper column = _ Ko
Keb + Ker)

. Kt
Portion of unbalanced moment to lower column = ———%——
(Kep + Kep)

The *“actual” columns are then designed for these moments.

K
Ky

K=hEI/?

Figure 20-10 Moment Distribution Factors DF

13.7.7.1 - 13.7.7.3 Negative Factored Moments—Negative factored moments for design must be taken at
faces of rectilinear supports, but not at a distance greater than 0.175¢; from the center of a support. This absolute
value is a limit on long narrow supports in order to prevent undue reduction in design moment. The support
memmber is defined as a column, capital, bracket or wall. Non-rectangular supports should be treated as square
supports having the same cross-sectional area. Note that for slab systems with beams, the faces of beams are not
considered face-of-support locations. Locations of the critical section for negative factored moment for various
support conditions are illustrated in Fig. 20-11. Note the special requirements illustrated for exterior supports.
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13.7.7.4 Moment Redistribution—Should a designer choose to use the Equivalent Frame Method to analyze
a slab system that meets the limitations of the Direct Design Method, the factored moments may be reduced so
that the total static factored moment (sum of the average negative and positive moments) need not exceed M,
computed by Eq. (13-4). This permissible reduction is illustrated in Fig. 20-12.

S Mo
— _r.______-‘y.yy
1

\+ M3
4o ¢ /2

4

C|/2

—

Figure 20-12 Total Static Design Moment for a Span

Since the Equivalent Frame Method of analysis is not an approximate methed, the moment redistribution al-
lowed in 8.4 may be used. Excessive cracking may result if these provisions are imprudently applied. The
burden of judgment is left to the designer as to what, if any, redistribution is warranted.

13.7.7.5 Factored Moments in Column Strips and Middle Strips—Negative and positive factored moments
may be distributed to the column strip and the two half-middle strips of the slab-beam in accordance with 13.6.4,
13.6.5 and 13.6.6, provided that the requirement of 13.6.1.6is satisfied. See discussionon 13.6.4, 13.6.5, 13.6.6

in Part 19.
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APPENDIX 20A DESIGN AIDS FOR MOMENT DISTRIBUTION CONSTANTS
Table A1 Moment Distribution Constants for Slab-Beam Members
— !‘ | p— 21
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0.00 — 00 050 00833 0.0151 D 0287 0.0247 ogt27 0.00226
0.00 400 0.50 0.0833 ©.0151 ©.0287 0 0247 00127 0.00226
010 418 0.51 0.0847 0.0154 0.0293 0.0251 00126 0.00214
0.10 0.20 436 052 0 0860 00158 0.0300 00255 00126 0.00201
0.30 453 0.54 0.0872 0.0181 00301 00259 00125 000188
0.40 470 0.55 0.0882 0.0165 0.0314 0 0262 0.0124 0.00174
00O 4.00 0.50 0.0833 0.0151 0.0287 00247 0027 0.00226
0.10 435 0.52 0.0857 0.0135 0.0299 0.0254 00127 0.00213
0.20 020 572 054 0.0880 0.0161 0031 0.0262 00126 0.00197
0.30 511 056 0.0901 0.0166 00324 € 0269 00125 000178
040 5.51 058 00921 o017 00336 0.0276 00123 0.00156
0.00 4.00 ©.50 ¢.0833 0.015% 00287 0.0247 00127 0 00226
0.10 449 053 0.0863 00155 00301 Q.0287 00128 0 00219
0.30 0.20 505 056 00693 @ 0160 0.0317 0.0267 00128 0.00207
030 569 0.58 0.0023 00185 00334 0.0278 00127 0.00190
0.40 6.41 [ X3 ] 0.0951 o017t 0 0252 0 0287 oo2a 0.00167
000 400 0.50 0.0833 0.0151 0.0287 0.0247 00127 0.00226
010 461 053 0 0B6E 00154 0.0302 0.0259 00129 0.00225
a.40 0.20 5135 0.56 0.0901 0.0158 0oMa 0027 0.0131 0.00221
0.30 625 0.60 0.0936 0.0162 0.0337 00264 00N 2.00211
040 137 0.64 0.0971 0.0166 00359 0.0297 0.0128 000195
CF1 = 0‘5CN|: CFZ = O'SCNZ
0.00 - 4.00 0.50 00833 0.0151 00287 0 0247 0027 00023
000 400 0.50 00832 0.0151 0.0287 0.0247 0.0127 0.0023
010 416 0.51 0.0887 0.0155 0.0296 0.0254 00130 0.0023
0w 0.20 431 0.52 0.0879 0.0158 0 0304 0.0261 0.0133 0.0023
0.30 445 0.54 0.0900 00162 v.om2 0.0267 00135 0.0023
0 40 458 0.54 0.0918 0.0165 0.0319 0.0273 00138 0.0023
0.00 4.00 050 00833 00151 00287 0.0247 0.0127 ©0.002%
010 430 0.52 0.0872 0.0156 0.0301 0.0259 0.0132 00023
0.20 0.20 461 0.5% 0.0912 0.0161 e 0317 0.0272 C0138 0.0023
0.30 192 057 0.0051 00167 0.0332 0.0285 0.0143 0.0024
0.40 5.22 0.58 0.0889 00172 0.0347 0.029¢ 0.0148 0.0024
0.00 4.00 0.50 0.0823 0015 0.0287 0.0247 0.0127 0.0023
0.10 442 053 ©0.0881 0.0156 ©.0305 0.0263 0.0134 0.0023
0.30 0.20 +89 0.56 0.0332 0.0161 0.0324 0.0261 0.0142 0.0024
0.30 5.40 0.59 0.0986 0.0167 0.0045 0.0300 0.0150 0.0024
0.40 5.93 062 0.1042 0.0173 0.0367 0.0320 0.0158 0.0025
0.00 400 0.50 0.0833 0.0151 0.0287 0.0247 0.027 0.0023
0.10 454 0.54 00884 0.0155 0.0305 0.0265 0.013s 0.0024
0.40 0.20 5.6 0.57 00041 00159 0.0326 0.028¢ 0.0145 0.0025
0.30 587 0.61 0.1005 0.0165 0.0350 00310 00155 0.002%
040 6.67 .64 0.1076 0.0170 0.0377 0.0336 0.0186 0.0026
Cry=2Cyi Cpp =2Cy,;
0.00 — 400 0.50 0.0833 00151 0.0287 0.0247 00127 0.0023
0.00 4.00 0.50 0.0833 0.0150 0.0287 0.0247 0.0127 0.0023
010 010 427 051 00817 0.0153 0.0289 0.0241 €.0116 0.0018
0.20 .56 0.52 0.0798 0.0156 0.0290 0.0234 0.0103 0.0013
0.00 4.00 050 0.0833 0.0151 0.0287 0.0247 09127 0.0023
020 0.10 449 a.51 0.0819 0.0154 0.0291 0.0240 00114 0.0018
.20 511 0.53 D.O7ES 0.0158 0.0283 0.0228 0.0096 0.0014
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APPENDIX 20A DESIGN AIDS FOR MOMENT DISTRIBUTION CONSTANTS (cont’d)

Table A2 Moment Distribution Constants for Slab-Beam Members (Drop thickness = 0.25h)

. li - . »(l

[—HT
1 CNZE-r.*— &2/3 CFZI-r 'ﬂz
M 1

L

‘b ,
}.!‘_/E-! l—y—e-i Crnrt [ Cry
€14 Py —~ 1,78
a 2
5L, FEMyr = E‘mNFiwi!l
E 14 /(1-Cpa/l2)e | - /
CN’/H }._ N2 ~ FCFI,Z KNF kNFECSIS !I
Stitfness | Carry Over | Unit. Load Fixed end moment Coaff, {(MyE) for (b—a)=0.2

Cni'y Cnzt2 Factors Factors | Fixed snd M.

Knr CNF | Cosft. (MR 4_pp a=02 a=04 a=08 a=08
Cry1=Cn1t: Cr2=Cna
¢.00 - 4.79 0.54 0.0879 | 00157 | 0.0309 | 0.0263 | 0.0129 | 0.0022
0.00 4.79 0.54 0.0879 | 0.0157 | 0.0309 { 00263 | 0.0129 | 0.0022
0.10 0.10 4.99 0.55 0.0890 | 00160 | 0.0316 { 0.0266 | 0.0128 | 0.0020
’ 0.20 5.18 0.56 0.0901 0.0163 | 0.0322 | 0.0270 | 0.0127 | 0.0019
0.30 5.37 0.57 0.0911 0.0167 | 0.0328 | 0.0273 | 0.0126 | 0.0018
0.00 4.79 0.54 0.0879 | 0.0157 | 0.0309 | 0.0263 | 0.0129 | 0.0022
0.20 010 | 517 0.56 0.0300 | 0.0161 0.0320 | 0.0269 | 0.0128 | 0.0020
) 0.20 5.56 058 0.0918 | 0.0166 | 0.0332 | 0.0276 | 0.0126 | 0.0018
0.30 5.96 0.60 0.0936 | 0.0171 0.0344 | 0.0282 | 0.0124 | 0.0016
0.00 4.79 0.54 0.0879 | 0.0157 | 00309 | 0.0263 | 0.0128 | 0.0022
0.30 0.10 5.32 0.57 0.0905 0.0161 0.0323 0.0272 0.0128 0.0021
’ 0.20 5.90 0.59 0.0930 ( 0.0166 | 0.0338 | 0.0281 0.0127 | 0.0019
0.30 6.55 0.62 0.0955 | 0.0171 0.0354 | 0.0290 | 0.0124 | 0.0017
Cgy=0.5Cyy; Cpz=0.5Cn;
0.00 — 479 0.54 0.0879 | 0.0157 | 00309 | 0.0263 | 0.0129 0.0022
0.00 4.79 0.54 0.0879 | 0.0157 | 0.0309 | 0.0263 | 0.0129 | 0.0022
0.10 0.10 4.96 0.55 00900 | 0.0180 | ©0317 | 0.0269 | 0.013t 0.0022
0.20 5.12 0.56 0.0920 | 0.0164 | 0.0325 | 0.0276 | 0.0134 | 0.0022
0.00 479 0.54 0.0879 0.0157 0.0309 0.0263 0.0129 0.0022
0.20 0.10 5.11 0.56 0.0914 0.0162 0.0323 0.0275 0.0133 0.0022
0.20 5.43 0.58 0.0950 | 0.0167 | 0.0337 | 0.0286 | 0.0138 | 0©.0022
Cr1=2Cy1; Cra=2Cy;
0.00 - 4.79 0.54 0.0879 | 0.0157 | 0.0309 | 0.0263 | 0.0128 | 0.0022
0.10 0.00 479 0.54 0.0879 | 0.0157 | 0.0309 | 00263 | 0.0129 | 0.0022
) 0.10 5.10 0.55 0.0860 | 0.0159 | 0.0311 00256 | 0.0117 0.0017
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APPENDIX 20A  DESIGN AIDS FOR MOMENT DISTRIBUTION CONSTANTS (cont’d)

Table A3 Moment Distribution Constants for Slab-Beam Members (Drop thickness = 0.50h)

- ll . ) o 11
) " o
T T*T _L r | T r
an Cne iR % Cr-zﬂ- ",
‘b
Near end(N) ' F°é end(f T ‘1! I |
' / !
A% Al Cril—= —icr
EsIqg o et 76 h—,76
E L FEMyy = éimuﬁwi‘lz
Y Eglg/{1-Cop/R2) Ko B
Stifiness | Carry Over| Unif. Load Fixed end moment Coetf (Myg) for b—a)=02
CN1’21 CN2‘21 Factors Factors | Fixed end M.
kne Cnr | Coeft. (Mypd 400 a=02 a=04 a=06 a=08

Cr1=Cn1i Cra=Cn2

0.00 — 5.84 059 | 00926 | 00164 | 00335 | 00278 | 0.0128 | 0.0020
0.00 5.84 059 | 00926 | 00164 | 0.0335 | 0.0279 | 0.0128 | 0.0020
0.10 0.10 6.04 060 | 00936 | 00167 | 0.0341 | 00282 | 0.0126 | 0.0018
0.20 6.24 061 | 00940 { 00170 | 0.0347 | 0.0285 | 0.0125 | 0.0017
0.30 6.43 061 | 00952 | 00173 ( 00353 | 00287 | 0.0123 | 0.0016
0.00 5.84 059 | 00926 | 00164 | 00335 | 00279 | 0.0128 | 0.0020
0.20 0.10 6.22 061 | 00942 | 00168 | 00346 | 00285 | 0.0126 | 0.0018
0.20 6.62 062 | 00e57 | 00172 | 00356 | 00200 | 0.0123 | 0.0016
0.30 7.01 064 | 00971 | 00177 | 00366 | 00294 | 0.0120 | 0.0014
0.00 5.84 059 | 00e26 | 00164 | 00335 | 00279 | 00128 | 0.0020
0.30 0.10 6.37 061 | 00947 | 00168 | 00348 | 00287 | 0.0128 | 00018
0.20 6.95 063 | 00967 | 00172 | 00362 | 00294 | 0.0123 | 0.0016
0.30 7.57 065 | 00986 | 00177 | 0.0375 | 0.0300 | 0.0119 | 0.0014

CF| = O.SCNﬁ CF2 = 0'5CN2

0.00 o 5.84 0.59 0.0926 0.0164 0.0335 0.0279 0.0128 | 0.0020
0.00 5.84 0.59 0.0926 0.0164 0.0335 0.0279 00128 | 0.0020
0.10 0.10 6.00 0.60 0.0945 | 0.0167 | 0.0343 0.0285 0.0130 | 0.0020
0.20 6.16 0.60 0.0862 0.0170 0.0350 ; 0.0291 0.0132 | 0.0020
0.00 5.84 0.59 0.0926 0.0164 0.0335 0.0279 0.0128 | 0.0020
0.20 0.10 6.15 0.60 0.0957 00169 | 0.0348 | 0.0290 0.0131 0.0020
0.20 6.47 0.62 0.0887 0.0173 0.0360 0.0300 0.0134 | 0.0020

Cr1=2Cyy; Cra =20y

0.00 - 5.84 0.59 0.0926 0.0164 0.0335 0.0278 0.0128 | 0.0020

0.10 0.00 5.84 0.59 0.0926 0.0164 0.0335 0.0279 0.0128 | 0.0020

) 0.10 6.17 0.60 0.0907 0.0166 0.0337 0.0273 0.0116 | 0.0018
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APPENDIX 20A

DESIGN AIDS FOR MOMENT DISTRIBUTION CONSTANTS (cont’d)

Table A4 Morment Distribution Constants for Slab-Beam Members (Drop thickness = 0.75h)

I |

. TJE frwe T*T ._Lh
a, |
Near endiN) Far end{F)

I._S

E: L4
NEgIg U-Cppl2)?

L
F T
N2 eﬁr@_,__Lz/?; Crz}- !I—-— i!z
L e ] N
Crni—= ’HCH
- wh /6 - k1,76

L g2
FEMNr = £ mys W5y
Knr “kNpEcs s /A

Cu’ = T CH/2
Stifiness Carry Qver | Unif. Load Fixed and momant Coeff. (Mg} tor (b—a}=0.2
CulRy Cn2/4y Factors Factors | Fixed end M.
knF Cne [ Coott (MNA  az00 | a-02 az04 | a=06 | a-08
Cr1=Cn1: Cr2=Cy;

0.00 -— 6.92 0.63 0.0565 Q.0171 0.0360 0.0293 0.0124 0.0017
0.00 6.92 0.63 0.0965 0.0171 0.0360 0.0293 0.0124 0.0017
0.10 0.10 7.12 0.64 0.0972 0.0174 0.0365 0.0295 0.0122 0.0016
0.20 7.21 0.64 0.0978 0.0176 0.0370 0.0297 0.0120 0.0014
0.30 7.48 0.65 0.0984 0.0179 0.0375 0.0299 0.0118 0.0013

0.00 €6.92 0.63 0.0965 0.0171 0.0360 0.0293 0.0124 0.0017

0.20 0.10 7.12 0.64 0.0977 0.0175 0.0369 0.0297 0.0121 0.0015
0.20 7.31 0.65 0.0988 0.0178 0.0378 0.0301 0.0118 0.0013

0.30 7.48 0.67 0.0999 0.0182 0.0386 0.0304 0.0115 0.0011

0.00 6.92 0.63 0.0965 0.0171 0.0360 0.0293 0.0124 0.0017

0.30 0.10 7.29 0.65 0.0981 0.0175 0.0371 0.0299 0.0121 0.0015
0.20 7.66 0.66 0.0996 6.0179 0.0383 0.0304 0.0117 0.0013

0.30 8.02 0.68 0.1009 0.0182 0.0394 0.0309 0.0113 0.0011

CF'l = D.SCN1; CFZ = 0‘50N2
0.00 — 6.92 0.63 0.0965 0.0171 0.0360 0.0293 0.0124 0.0017
0.00 6.92 0.63 0.0965 0.6t71 0.0360 0.0293 0.0124 0.0017
0.10 0.10 7.08 0.64 0.0980 0.0174 0.0366 0.0298 0.0125 0.0017
0.20 7.23 0.64 0.0983 0.0177 0.0372 6.0302 0.0126 0.0016
0.00 6.92 0.63 0.0965 0.0171 0.0360 0.0293 0.0124 0.0017
0.20 0.10 7.21 0.64 0.0991 0.0175 0.0371 0.0302 0.0126 0.0017
0.20 7.51 0.65 0.1014 0.0179 0.0381 0.0310 0.0128 0.0016
Cr1=2Cyy Cra=2Cy;

0.00 - 6.92 0.63 0.0965 0.0171 0.0360 0.0293 0.0124 0.0017
0.10 0.00 6.92 0.63 0.0965 0.0171 0.0360 0.0293 0.0124 0.0017
’ 0.10 7.26 0.64 0.0946 0.0173 0.0361 0.0287 0.0112 0.0013

20-16




APPENDIX 20A  DESIGN AIDS FOR MOMENT DISTRIBUTION CONSTANTS (cont’d)

Table A5 Moment Distribution Constants for Slab-Beam Members (Drop thickness = h)

\ AL . !I
rfr oo T . 1T
T c o ‘
of, N2 /3 Ce3 f
! bl V_f—r} l—:ff.'i" _LZ I‘r- 3 E 2
Near end{N) ché end(f) [ l 1 I Y
/6 / : g i
LK Rl CrniF— e Cey
Es L4 ol w278 n-1,/6
n 2
I, FEMyp =L m neWidi
Eglg/{1-Cphop/l2) 2
Cy/2d - kcqr2 Knr knpEcsls 7
Stitiness Carry Over | Unif. Load Fixed end moment Coeff. (Miyg) for (b—a) =02
Cnildhy Cna'ls Factors Factors | Fixed end M.
Kne Cnp | Cooft.(mnell  4-go a=02 a=04 a=06 a=08

Cr1=Cni1; Cr2=Cun2

0.00 - 7.89 0.66 0.0993 | 0.0177 | 00380 | 00303 | 00118 | 0.0014

0.00 7.89 0.66 0.0993 0.0177 0.0380 | ©0.0303 | 00118 0.0014
0.10 0.10 8.07 0.66 0.0998 0.0180 0.0385 0.0305 ¢.0116 | 0.0013
0.20 8.24 0.67 0.1003 | 0.6182 0.0389 | 0.0306 0.0115 0.0012
0.30 8.40 0.67 0.1007 0.0183 0.0393 0.0307 0.0113 | 0.0011

0.00 7.89 0.66 0.0993 0.0177 0.0380 { 00303 | 00118 | 0.0014
0.20 0.10 8.22 0.67 0.1002 0.0180 0.0388 | 0.0306 0.0115 0.0012
0.20 8.85 0.68 0.101C | 0.0183 0.0395 0.0309 0.0112 0.0011

0.30 9.87 069 | 01018 { 00186 | 00402 | 0.0311 | 00109 | 0.0009
0.00 7.89 066 | 00993 { 00177 | 00380 | 0.0303 | 0.0118 | 0.0014
0.30 0.10 B.35 067 | 01005 | 00181 | 00380 | 0.0307 | 0.0115 | 0.0012
0.20 8.82 068 | 01016 | 0.0184 | 00398 | 0.0311 | 00111 | 0.001
0.30 9.28 070 | 0.1026 | 00187 | 0.0409 | 0.0314 | 0.0107 | 0.0009

Cr1=0.5CN1; Cr2 =0.5Cp2

0.00 - 7.88 0.66 0.0993 0.0177 0.0380 0.0303 0.0118 0.0014

0.00 7.89 0.66 0.0993 | 0.0177 0.0380 | 0.0303 | 0.0118 | 0.0014
0.10 0.10 8.03 0.66 0.1006 | 0.0180 0.0386 | 0.0307 | 00119 | 0.0014
0.20 8.16 0.67 0.1016 | 0.0182 | 0.0390 | 0.0310 | 00120 | 0.0014

0.00 7.89 0.66 0.0993 0.0177 0.0380 | 0.0303 0.0118 | 0.0014
0.20 0.10 8.15 0.67 0.1014 6.0181 0.0389 { 0.0310 0.0120 0.0014
0.20 8.41 0.68 0.1032 0.0184 0.0388 | 0.0316 0.0121 0.0013

Cr1=2CN1; Cr2=0.5Cn2

0.00 - 7.89 0.66 00993 | 0.0177 | 0.0380 | 0.0303 j 0.0118 | 0.0014

0.00 7.79 0.66 0.0093 | 0.0177 0.0380 | 0.0303 0.0118 | 0.0014

0.10 0.10 8.20 067 | 00981 | 00179 | 00382 | 00207 | 00113 | 0.0010
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APPENDIX20A DESIGN AIDS FOR MOMENT DISTRIBUTION CONSTANTS (cont’d)

Tabie A6 Moment Distribution Constanis for Slab-Beam Members
{Column dimensions assumed equal at near end and far end —Cry = Cn1, CF2 = CN2J

" £ -l |——_—_-_——.."
i - |
_,L. ﬁ |w|oiioilli _L. I ’
1 ' X h =T Cr2.,
¥ urr c,!?_r;:_ BaL /_3,__3-5*3__‘_ 2,
Near| End (N) Far|End{F} ,_*_ E T’
' ) |

[“‘éa,ﬂ LAl-Cap /102
% eNie] - — }—Cﬂ
IT/E

Esld""‘-‘m’ l,_ FEMpg = myg whj?
c“‘m" k= cn/2 Kng =knpEas I,/ 4,

t =15h t =2h
CJ/2, | CiR, |
kN | ONFL Mye [ ken | CEn | MeN [ kne | OnF | MNF | ken | CFN | My :
0.00 — 539 049 | 01023 | 4.26 060 | 0.0749 | 6.63 049 | 0.1190 | 4.49 065 | 0.0676 :

0.00 539 | 0.49 | 01023 | 4.26 080 | 00748 || 663 049 | 01190 | 4.49 0.85 | 0.0676
0.10 565 | 052 § 0.1012 | 465 060 | 00794 | 7.08 054 | 0.1145 | 5.19 0.68 | 0.0757
0.20 586 | 054 | 01012 | 491 D61 | 00818 | 7.22 056 | 0.1140 | 543 067 | 0.0778
0.30 605 | 055 | 01025 | 5.10 062 | 00838 || 7.36 058 | 01142 | 557 087 | 00786

0.10

000 | 539 | 040 | 01023 | 426 | 060 | 0.0749 [ 663 | 0.49 | 01190 | 449 | 065 | 0.0676 |
010 | 588 | osa | 01006 | 504 | 061 | 0082 | 7.41 | 058 | 01111 | 596 | 0.86 | 0.0823 =
020 | 5a ll 6233 | 088 | 01003 | 563 | 062 | 0os7a | 7.85 | 061 | 0.1094 | 657 | 067 | 0.0872
030 |l 675 | oso | 01008 | 610 | 064 | 00903 [| 818 | 063 | 0.1003 | 694 | 0.8 | 0.0892

0.00 5.38 0.49 | 0.1023 | 4.26 080 { 0075 | 663 049 | 0.1190 | 449 0.65 | 0.0676
0.10 6.08 056 | 0.1003 | 5.40 061 | 0085 § 7.76 062 | 0.1087 { 6.77 0.67 | 0.0873
0.20 6.78 061 | 00936 | 6.38 063 | 0.092 j 849 066 | 0.1055 | 7.91 0.68 | 0.0952
0.30 7.48 064 | 00997 | 7.25 065 | 0096 | 9.086 088 | 0.1047 | 866 069 | 0.091 i

0.30
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APPENDIX 20A DESIGN AIDS FOR MOMENT DISTRIBUTION CONSTANTS (cont’d)
Table A7 Stiffness and Carry-Over Factors for Columns

ta £1
I Kook 7=
H
Ta For volues of
HC REA and Cpa read
{1/} as {tp/1y)
-
e _ g.con be
T Qppronimated

Ty as 2/2.
taig HiHe 108 110 118 1.20 1.2 1.30 138 1.40 1.45 150
B.00 ®AB 4,20 4.40 450 180 5.00 5.20 5.0 5 .50 5.80 .00
’ CAB a.%7 0.65 8.73 5. wa 0.87 0.9 1.0} 1.10 117 iz
0.2 kAB 4.31 4.62 495 5.30 5.65 6.02 .40 B.79 7.20 7.62
’ ~aAB 0.56 0.62 0.68 0.74 0.80 0.85 091 0.96 .01 1.07
6.4 kAR 4.38 4.79 §.22 5.67 6.15 6.65 7.18 7.74 B.32 8.84
: CaB 0.55 .60 0.65 0.7¢ 074 0.79 0.83 0.87 0.91 0.94
06 kAB 4.44 491 5.42 5.96 6.54 7.15 7.81 B.50 523 10.01
’ CABR 0.55 0.58 0.83 067 0.70 0.7a 0.77 0.80 0.82 0.85
0.8 kAB 4.49 5.01 5.58 5.19 6.85 7.56 B.31 912 9.98 10.89
’ Cap 0.54 0.58 0.61 0.64 067 Q.70 0.72 0.75 077 a.79
10 kAR 452 5.09 571 6.38 711 7.89 8.73 963 10.60 1162
: caB 0.54 0.57 0.60 0.62 0.65 0.67 0.69 0.71 0.73 .74
132 KAB 455 5.16 5.82 6.54 7.32 817 508 10.07 11.12 12.25
’ CAB 0.53 0.56 0.59 0.61 0.63 0.65 0.66 058 0.89 0.70
14 KAB 4.58 5.2% 5.91 668 7.51 a.41 9.3 10.43 1.57 12.78
’ cap 0.53 0.55 0.58 0.80 .61 0863 0.54 0.65 0.66 0.67
16 KAB 4.60 5.26 5.89 6.79 7.66 861 9.64 10.75 11.95 13.24
’ Cag 0.53 0.55 057 0.5¢ .60 a.61 .82 0.83 0.64 065
18 KAB 462 5.30 5.06 6.88 7.80 878 8.87 11.03 12.29 13.65
' CAB 0.52 0.55 0.56 0.58 0.59 0.60 a9.61 0.61 0.62 0.63
20 kA8 4.63 534 812 6.98 7.92 8.94 10.06 11.27 12.59 14.00
’ CAB 0.52 0.54 0.56 0.57 0.58 0.59 0.59 0.60 0.60 0.61
29 KA 465 5.37 6.17 7.05 8.02 9.08 10.24 11.49 12.85 14.31
’ Cap 0.52 0.54 Q.58 0.56 a.57 0.58 0.58 0.59 0.59 0.59
2.4 kAB 4.66 5.40 6.22 712 a.11 9.20 10.38 11.68 1308 14.60
’ Cap 0.52 0.53 0.55 0.56 056 0.57 0.57 0.58 058 0.58
286 KAB 487 542 6.26 7.18 8.20 9.31 10.53 11.86 13.29 14.85
’ CaB 0.52 0.53 0.54 .55 a.56 0.56 0.56 0.57 0.57 0.57
28 kAB 468 5.44 6.29 7.23 827 941 10.66 12.01 13.48 15.07
' CAB 0.52 0.53 0.54 0.55 0.55 0.55 0.58 0.56 0.56 0.56
.0 kAB 469 5.46 6.33 7.28 8.34 9.50 10.77 1215 13.65 15.28
i CAB 0.52 0.53 0.54 0.54 0.55 0.55 055 0.55 0.55 Q.55
a2 kAB 4.70 5.48 6.36 7.33 8 40 458 10.87 12.28 13.81 15.47
i CAR 0.52 0.53 053 0.54 0.54 0.54 0.54 0.54 0.54 0.54
24 XKAB an 5.50 638 737 B.46 9.65 10.97 12.40 13.85 15.64
' CAB 0.51 0.52 0.53 0.53 0.54 0.54 054 0.53 0.53 0.53
16 KAB a7t 551 6.41 7.41 851 9.72 1105 12.51 14.09 15.80
: caB 0.51 0.52 0.53 053 053 053 0.53 053 053 0.52
28 kAB 4.72 5.53 6.43 7.44 8.56 978 1133 12.60 14.21 15.95
- Cag 0.51 052 0.53 053 D53 0.53 0.53 .52 0.52 0.52
A0 kAR 472 554 B.45 747 8.60 9.84 11.21 12.70 1432 16.08
: CAB 0.51 0.52 0.52 0.53 0.53 0.52 0.52 0.52 0.52 0.51
42 kAR 473 555 6.47 7.50 B.64 9.90 11.27 12.78 14.42 16.20
’ CaB 0.5t 0.52 0.52 6.52 052 0.52 0.52 0.51 0.51 0.51
a4 kAR 473 5.56 6.49 ?.53 a8 935 1134 12.86 14.52 16.32
) cag 0.51 0.52 0.52 0.52 052 0.52 051 0.51 0.51 0.50
46 AR 4.74 5.57 £.51 785 871 9.99 11.40 12,93 14.61 16.43
i Cap 0.51 0.52 0.52 0.52 0.52 0.52 0.51 0.51 .50 0.50
a8 kKAB 4.74 5.58 6.53 7.58 8.75 10.03 11.45 13.00 1469 16.53
: Cag 0.5t 0.52 0.52 0.52 0.52 0.51 0.51 0.50 0.50 0.49
5.0 kAR 475 5,59 6.54 7.60 8.78 10.07 11.50 13.67 1477 16.62
’ CAB 0.51 Q.51 0.52 052 0.51 G.51 0.51 050 0.49 0.49
8.0 kAB 476 5.63 6.60 7.69 8.90 163a 11.72 13.33 15.10 17.02
) Cap 0.54 0.51 0.51 0.51 0.50 0.50 0.49 0.49 0.48 0.47
7.0 kAB 4.78 5.86 6.66 7.76 9.00 10.37 11.88 1354 15.35 17.32
’ CAB 0.51 0.51 a.51 0.50 0.50 0.4¢ 0.48 0.48 047 0.46
a0 KAB 4.78 5.68 669 7.82 9.07 10.47 1201 13.70 15.54 17.56
- CAB 0.51 C.51 0.50 0.50 043 0.49 0.48 0.47 0.48 0.45
9.0 kAR 479 5,69 8.71 786 9.13 10.55 12.11 13.83 15.70 17.74
. CaAB 0.50 a.50 0.50 450 048 0.48 c.47 0.46 045 .45
10.0 "AR 4,80 8,74 8.74 785 918 10.81 1219 1393 1583 17.90
CAB 0.50 0.50 0.50 0.49 0.48 0.48 0.47 048 D.45 0.44
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Example 20.1—Two-Way Slab Without Beams Analyzed by Equivalent Frame Method

Using the Equivalent Frame Method, determine design moments for the slab system in the direction shown, for
an intermediate floor.

]

b7 \§ o

T 18'-0"
Story height = 9 ft __% NN | ‘% |
Column dimensions = 16 x 16in. [ N F
Lateral loads to be resisted by shear walls 7 \ o"
No edge beams - + -
Partition weight = 20 psf

design

= 6,000 psi (for columns), normal weight concrete

Service live load = 40 psf b 0"
f. = 4,000 psi (for slabs), normal weight concrete - g, —
fe
fy = 60,000 psi strip
140" |4 -0 1

Code
Calculations and Discussion Reference
1. Preliminary design for slab thickness h:
a. Control of deflections.
For flat plate slab systems, the minimum overall thickness h with 9532
Grade 60 reinforcement is (see Table 18-1):
= Y = 200 = 6.67 in. Table 9.5 (a)
30 30

but not less than 5 in. 9.5.3.2(a)

where ¢, = length of clear span in the long direction = 216 - 16 = 200 in.
Try 7 in. slab for all panels (weight = 87.5 psf)

Note, in addition to ACI 318-05 deflection control requirements, thickness of slab should satisfy the
minimum required for fire resistance, as specified in the locally adopted building code.

b.  Shear strength of slab.

Use average effective depth d = 5.75in. (3/4 in. cover and No. 4 bar)

Factored dead load, qpy = 1.2 (87.5 + 20) = 129 psf 9.2.1

Factored live load, g1, = 1.6 X 40 = 64 psf !
Total factored load = 193 psf '
For wide beam action consider a 12-in. wide strip taken at d distance 11.12.1.1 :

from the face of support in the long direction (see Fig. 20-13).

Vy = 0.193 x 7.854 = 1.5 kips

|

Ve = 2JF byd
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Example 20.1 (cont’d) Calculations and Discussion Reference

OV =075 X 2,/4,000 X 12 X 5.75/1,000 = 6.6kips >V, O.K. 9323

For two-way action, since there are no shear forces at the centerlines of adjacent
panels, the shear strength at d/2 distance around the support is computed as follows:

Vy = 0.193 [(18 x 14) - 1.812] = 48.0 kips
Ve = 4\[5 byd (for square interior column) Eq. (11-35)
= 4./4,000 (4 X 21.75) X 5.75/1,000 = 126.6 kips
oV, = 075 x 126.6 = 95.0kips > V, OK 9.323
18'-0"
|
!
|
|,21.75"
|'_|"__“l___ —
l \t 1
1 : \ IZ! 75" 14-0"
| {el,
.'§__J_L
_H |—av. d72 - 2.88"
7.854' | av.d = 5.75"
-———-—.———-: —

k% ot panel

Figure 20-13 Ciritical Sections for Shear for Example Problem

Preliminary design indicates that a 7 in. overall slab thickness is adequate for control
of deflections and shear strength.

2. Frame members of equivalent frame;

Determine moment distribution factors and fixed-end moments for the equivalent frame
members. The moment distribution procedure will be used to analyze the partial frame.
Stiffness factors k, carry over factors COF, and fixed-end moment factors FEM for the slab-
beams and column members are determined using the tables of Appendix 20-A. These
calculations are shown here.

a.  Flexural stiffness of slab-beams at both ends, K,

oo 18 g e 16 _ g,
4 (18 x 12) 2 (14 x 12)
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Example 20.1 (cont’d) Calculations and Discussion Reference
For cr; = enp and cp = oz, knp = kg = 4.13 by interpolation from Table Al
in Appendix 20A.
Thus, Kgp = knp E;—’;Is =413 -%51—15— Table A1
= 4.13 x 3.60 x 106 x 4,802/216 = 331 x 10%in.-Ib
where I = fzh—3 = M = 4,802 in.4
12 12
Ecs = 57,000 Jff; =57,000/4,000 =3.60 X 106 psi 8.5.1
Carry-over factor COF = (.509, by interpolation from Table Al.
Fixed-end moment FEM = 0.0843wu€2€12, by interpolation from Table A1l.
b.  Flexural stiffness of column members at both ends, K.
Referring to Table A7, Appendix 20A, t; =3.5in., t, = 3.5 in,,
H=9ft=108in., Ho = 101 in., ty/t, = 1, HH. = 1.07
Thus, kap = kga = 4.74 by interpolation.
Ke = 474E_.1./¢, Table A7
= 4.74 x 4.42 x 106 x 5461/108 = 1059 x 108 in.-1b
where I, = i= ﬂ = 5,461 in.4
12 12
Ecs = 57,000 \JfZ =57.000,/6,000 = 4.42 X 106 psi 8.5.1
£. = 9ft = 108in.
c. Torsional stiffness of torsional members, K.
K FEC R.13.7.5

£T [£2 (1 - catt5)?]

_ 9x3.60x10° x13.25
168(0.905)°

= 3.45 x 106in.-1b
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Example 20.1 (cont’d) Calculations and Discussion Reference
where C = I (1 - 0.63 x/y) (x3y/3) 13.0
= (1-0.63 x 7/16) (73 x 16/3) = 1,325 in.4 l.___.l’e"
1 /_Torsiono!
¢z = 16in.and ¢, = 14ft = 168in. o A member
| | A \X {
d. Equivalent column stiffness K. - r [ —
K, = —xeXZK; Conditi f Fig. 20-7
ec = 3K, + 2K, ondition (a} of Fig. 20-

(2 x1,059)(2 x 345)
= [(2x1,059) + (2 x 345)]

= 520 x 108 in.-1b

where XK, is for two torsional members, one on each side of column, and ZK, is
for the upper and lower columns at the slab-beam joint of an intermediate floor.

e. Slab-beam joint distribution factors DF. +
h
t \

F- 31 _ g3g9 1
(331 + 520) K,

At interior joint,

At exterior joint, K

331 e
F = = 0.280
(331 + 331 + 520)
520 520
COF for slab-beam = 0.509 331 331] 331
3. Partial frame analysis of equivalent frame: ‘L L

Determine maximum negative and positive moments for the slab-beams using the moment 13.7.6.2
distribution method. Since the service live load does not exceed three-quarters of the ser-
vice dead load, design moments are assumed to occur at all critical sections with full fac-
tored live load on all spans.
L8 gy 2
D (87.5 +20) 4
a. Factored load and fixed-end moments.

Factored dead load qp,= 1.2 (87.5 +20) = 129 psf Eq. (9-2)

Factored live load q; , = 1.6 (40) = 64 psf Eq. (9-2)
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Example 20.1 (cont’d) Calculations and Discussion Reference

Factored load qy = gqpy +qry = 193 psf

FEM's for slab-beams = mypq,fs¢ ]2 {Table Al, Appendix 20A)

0.0843 (0.193 x 14) 182 = 73.8 fi-kips

b.  Moment distribution. Computations are shown in Table 20-1. Counterclockwise rota-
tional moments acting on the member ends are taken as positive. Positive span mo-
ments are determined from the following equation:

M, (midspan) = M, - (My + Myr)/2 ;
where M, is the moment at midspan for a simple beam.

When the end moments are not equal, the maximum moment in the span does not :
occur at midspan, but its value is close to that at midspan for this example, |

Positive moment in span 1-2:

+My = (0.193 x 14) 18%/8 - (46.6 + 84.0)/2 = 44.1 ft-kips
Positive moment in span 2-3:
+My = (0.193 x 14) 182%/8 - (762 + 76.2)/2 = 33.2 fi-kips

Table 20-1 Moment Distribution for Partial Frame

> T T 7
G

Joint 1 2 3 4

Member 1-2 2-1 2-3 3-2 3-4 4-3

DF 0.339 0.280 0.280 0.280 0.280 0.389

COF 0.509 0.509 0.509 0.509 0.509 0.509
FEM +73.8 -73.8 +73.8 -73.8 +73.8 -73.8
Dist -28.7 0.0 0.0 0.0 0.0 28.7
CoO 0.0 -14.6 0.0 0.0 146 0.0
Dist 6.0 4.1 4.1 -4.1 4.1 0.0
CcoO 21 0.0 2.1 2.1 0.0 2.1
Dist 0.8 0.6 06 0.6 -0.6 0.8
CO 0.3 -04 -0.3 0.3 04 0.3
Dist -0.1 0.2 0.2 -0.2 0.2 0.1
co 0.1 0.1 -0.1 0.1 0.1 0.1 i
Dist 0.0 0.0 0.0 0.0 0.0 0.0

Neg. M 46.6 -84.0 76.2 -76.2 84.0 -46.6
M@

midspan 44 1 33.2 44 1
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Example 20.1 (cont’d) Calculations and Discussion Reference
4. Design moments:
Positive and negative factored moments for the siab system in the direction of analysis are 13.7.7.1
plotted in Fig. 20-14. The negative design moments are taken at the faces of rectilinear
supports but not at distances greater than 0.175¢; from the centers of supports.
% = 0671t < 0.175 x 18 =3.2 ft (Use face of support location)
1 2 3
| wy=0.193 % 14 =270 ki |
OO T T I T A T T LI T T I
| 180" | 18- 0" |
r »- >
44.1
| /\ | /332\
_[4/6.6
} 762
84.0
FRAME MOMENTS (fi-kips)
26.4
200 24.3
E>< 204 N
|
225
246 56 4 243
FHAME SHEARS ( klps
. 32.3
67,01 608 608\ /g7
|
FRAME MOMENTS (t-kips) i
Figure 20-14 Positive and Negative Design Moments for Slab-Beam
{All Spans Loaded with Full Faciored Live Load)
5. Total factored moment per span:
13.7.7.4

Slab systems within the limitations of 13.6.1 may have the resulting moments
reduced in such proportion that the nurnerical sum of the positive and average
negative moments need not be greater than:
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Example 20.1 (cont’d) Calculations and Discussion Reference

2
M, = %{a— = 0.193 x 14 x (16.67)2/8 = 93.9 fi-kips

o

End spans: 44.1 + (32.3 + 67.0)/2 = 93.8 ft-kips
Interior span: 33.2 + (60.8 + 60.8)/2 = 94 ft-kips

It may be seen that the total design moments from the Equivalent Frame Method yield a
static moment equal to that given by the static moment expression used with the Direct
Design Method.

6. Distribution of design moments across slab-beam strip: ' 13.7.7.5

The negative and positive factored moments at critical sections may be distributed to the
colurn strip and the two half-middle strips of the slab-beam according to the proportions
specified in 13.6.4 and 13.6.6. The requirement of 13.6.1.6 does not apply for slab systems
without beams, o = 0. Distribution of factored moments at critical sections is summarized

in Table 20-2.
Table 20-2 Distribution of Factored Momenis
Column Strip Moment (ft-kips) in
Factored Moment Two Half-Middle
{ft-kips) Percent* Momenit (it-kips) Strips™
End Span:
Extetior Negative 32.3 100 323 0.0
Posttive 441 60 265 17.7
Interipr Negative 67.0 75 50.3 16.7
interior Span:
Negative 60.8 7% 456 15.2
Positive 332 60 19.9 13.2
* For slab systems without beams

** That portion of the factored moment not resisted by the column strip is assigned to the two half-middle strips.

7. Column moments:

The unbalanced moment from the slab-beams at the supports of the equivalent frame are
distributed to the actual columns above and below the slab-beam in proportion to the rela-
tive stiffnesses of the actual columns. Referring to Fig. 20-14, the unbalanced moment at
joints 1 and 2 are:

Joint 1 = +46.6 fi-kips

Joint 2

-84.0 +76.2 = -7.8 ft-kips

The stiffness and carry-over factors of the actual columns and the distribution of the unbal-
anced moments to the exterior and interior columns are shown in Fig. 20-15. The design
moments for the columns may be taken at the juncture of column and slab.
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12.86 2.15

Tewm ) / ’ —r

22.08 top of glab g
COF = 0.552 233 -
K. =1059 X( ( 349 Y &366 }
COF — - '_r"{{_T__
=0.562
K. =1059 233} 3.66& 39 90"
bim. of slab
/ 2208 \

¢ ) EETT) 235
EXTERICR COLUMN  INTERIOR COLUMN

Figure 20-15 Column Moments (Unbalanced Moments from Slab-Bearn)
In summary:
Design moment in exterior column = 22.08 ft-kips
Design moment in interior column = 3.66 ft-kips
8. Check slab flexural and shear strength at exterior column
a.  Total flexural reinforcement required for design strip:

i. Determine reinforcement required for column strip moment M, = 32.3 ft-kips

Assume tension-controlled section (¢ = 0.9) 89321
Column strip width b = 2312 _ g4 12.2.1
M 32.3 x 12,000 .
Ry = 1 — > = 155 psi
" 3bdZ 09 x 84 x 5752 P
p= 0.85f - - 2Ru,
fy 0.85f;
0.85 x 4 2 x 155
= — > |l- 1-——=t— . | = (0.0026
60 J 0.85 x 4,000

A, =pbd =0.0026 x 84 x 5.75=1.28 in2
Pmin = 0.0018 13.3.1

Min A, =0.0018 x 84 x 7=1.06in.2 < 1.28 in.2

Number of No. 4 bars = %‘- = 6.4, say 7 bars

Maximum spacing s, =2h =14 in. < 18 in. 1332
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(0.003)5.75 ~ 0.003 = 0.048 > 0.005
034

Therefore, section is tension-controlled. 10.3.4
Use 7-No. 4 bars in column strip.

Hi. Check slab reinforcement at exterior column for moment transfer
between slab and column

Portion of unbalanced moment transferred by flexure = ;M 13.5.3.2

From Fig. 16-13, Case C:
br=c+ 34 =16+ 32 = jg83in.

by =cz +d =16+ 575 =21.751n,
1

Y= (13-
(= 1+ @2/3)4b /b, Eq. (13-1)

1
1+ (213)418.88/21.75

0.62

TeM,=0.62 X 32.3 =200 fr-kips

Note that the provisions of 13.5.3.3 may be utilized; however, they are
not in this example. 5

Assuming tension-controlled behavior, determine required area of
reinforcement for Y;M,, = 20.0 ft-kips

Effective slab width b=cy + 3h = 16 + 3(7) =37 in. 13.5.3.2

R, = My, _ _20x12,000 _ 218 psi
obd2 0.9 x 37 x 5,752

o 0.856(,_ [_ 2R,
=78 | Y 085K
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Example 20.1 (cont’d) Calculations and Discussion Reference
0.85 x 4 2 x 218
o 28 X2y o= X218
60 [ 1[ 085 x 4,000 | 00038

A;=0.0038 x 37 Xx5.75=0.80in2

Min. A, = 0.0018 X 37 X 7=0.47 in.2 < 0.80in.2 13.3.1
0.80 _
Number of No. 4 bars = 020 = 4

Verify tension-controlled section:

_ Ay - (4 x0.2) x 60
T 0.85fb  0.85 x 4 x 37

a =0.38in.

_ (0003} < _ _
&= [ 5 a5 )5.75 0.003 = 0.035 > 0.005

Therefore, section is tension-controlled. 10.3.4

Provide the required 4-No. 4 bars by concentrating 4 of the column strip
bars (7-No. 4) within the 37 in. slab width over the column. For
symmetry, add one additional No. 4 bar outside of 37-in. width.

Note that the column strip section rernains tension-controlled with the
addition of 1-No. 4 bar.

The reinforcement details at the edge column are shown below.
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Cotumn sirip — 7'=0"

31"

4]

L

5.0

|l
I
|
|
1
!
!
!
|
I
i
!
!

Z,
\
\ ) “ — i — .
2-No. 4 @ 12° 4-No. 4 @ 9" 2-No. 4 @ 12°
) -
iii. Determine reinforcement required for middle strip.
Provide minimum reinforcement, since M, = 0 (see Table 20-2).
Min. A, =0.0018 x 84 X 7=1.06 in.2
Maximum spacing 8y, = 2h = 14in. < 18 in. 13.3.2
Provide No. 4 @ 14 in. in middle strip.
b. Check combined shear stress at inside face of critical transfer section 11.12.6.1

For shear strength equations, see Part 16.

vu_Xy_ + WMy

T A JiC
From Example 19.1, V, = 25.6 kips

When factored moments are determined by an accurate method of frame
analysis, such as the Equivalent Frame Method, unbalanced moment is
taken directly from the results of the frame analysis. Also, considering the
approximate nature of the moment transfer analysis procedure, assume the
unbalanced moment My, is at the centroid of the critical transfer section,
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Example 20.1 (cont’d)

Calculations and Discussion

Code
Reference

Thus, M, = 32.3 ft-kips (see Table 20-2)

Yy = 1-Y¢=1-062 = 0.38

From Example 19.1, critical section properties:
Ac=342210n2

J/e =2.357 in.3

_ 25,600

vom 4 0.38 x 323 x 12,000

342.2 2,357
=74.8 + 62.5 = 137.3 psi

Allowable shear stress ¢v, = ¢4 ,[T. = 189.7 psi> v,

20-31

OK.

Eq. (11-39)

11.12.6.2



Example 20.2—Two-Way Slab with Beams Analyzed by Equivalent Frame Method

Using the Equivalent Frame Method, determine design moments for the slab system in the direction shown, for
an intermediate floor.

|
| N
‘ - i7-6"
] N
L N
G i7-6" w E
N\ |
& I?'TG" >
J
design sirip
L _22-0" E 22-0"
Story height = 12 ft
Edge beam dimensions = 14 x 27 in. j
Interior beam dimensions = 14 x 20 in.
Column dimensions = 18 x 18 in.
Service live load = 100 psf
fs = 4,000 psi (for all members), normal weight concrete
fy = 60,000 psi
Code
Calculations and Discussion Reference
1. Preliminary design for slab thickness h.
Control of deflections: 9.5.3.3
From Example 19.2, the beam-to-siab flexural stiffness ratios « are:
of = 13.30 (NS edge beam)
= 16.45 (EW edge beam)
!
= 3.16 (NS interior beam) |
;
= 3.98 (EW interior beam)
Since all o¢ > 2.0 (see Fig. 8-2), Eq. (9-13) will control. Therefore,
€, (0.8 + £, /200,000)
h Eq. (9-12)

36 + 9B
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246 (0.8 + 60,000/ 200,000)
36 + 9(1.28)

= 5.7in

where £, = clear span in long direction = 20.5 ft = 246 in.

_ clear span in long direction _ 20.5 _ 1.28

clear span in short direction 16.0

Use 6 in. slab thickness.

2. Frame members of equivalent frame.

Determine moment distribution constants and fixed-end moment coefficients for the equiva-
lent frame members. The moment distribution procedure will be used to analyze the partial
frame for vertical loading. Stiffness factors k, carry-over factors COF, and fixed-end mo-
ment factors FEM for the slab-beams and column members are determined using the tables
of Appendix 20-A. These calculations are shown here.

a.

Slab-beams, flexural stiffness at both ends Kg:

m_ i8

= - 00857 = 0.1
6 175 x 12
. RN L Y P
4, 22x12

Referring to Table A1, Appendix 20A,

411E g,

; = 4.11 x 25387E/(17.5 x 12) = 497,
1

Ky =
where Igp, is the moment of inertia of slab-beam section shown in Fig. 20-16 and
computed with the aid of Fig. 20-21 at the end of this Example.

Isp = 2.72 (14 x 203Y/12 = 25,387 in.*

Carry-over factor COF = 0.507

Fixed-end moment, FEM = 0.0842q,¢,¢,*

fp=22" 264"
‘6"

2 3
! 4" !

panel 14" ‘]F_ panal

Figure 20-16 Cross-Section of Slab-Beam
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Calculations and Discussion

Code
Reference

b.

Column members, flexural stiffness K.
ty = 171in, ty = 3in,, tfty = 5.67

H=12ft = 144in,, H, = 144-17-3 = 124in.

H/H, = 1.16 for interior columns

ta = 241in., tp = 3in, tfty = 8.0

H = 12ft = 144in, H, = 144-24-3 =117 in.
H/H. = 1.23 for exterior columns
Referring to Table A7, Appendix 20A,

For interior columns:

K, - O3Bl _ 682x8M8E, _ 0

£ 144

K. - 49%El, _ 499X 8V48E, _ ..o
cb 7, 144 ¢

For exterior columns:

8.57E,J, _ 8.57 x 8748E,

= 512E,
3 144

Keg =

531EJ, _ 531 x 8748E,

323E,
¢ 144

4 4 '
where I, = O _(8 _ 8,748 in 4
12 12

£. = 121t = 144 in.
Torsional members, torsional stiffness K.:

9E,C

K, = — 2o¢=
(1 - cplty)?

where C = Z(1 - 0.63 x/y) (x3y/3)
For interior columns:

K, = 9E, x 11,698/[264 (0.932)3] = 493E,
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Example 20.2 (cont’d) Calculations and Discussion Reference
where 1- 2 = I-L = {.932
&y (22 x 12)

C is taken as the larger value computed with the aid of Table 19-2 for the torsional
member shown in Fig. 20-17.

X1 = 14in. X2 = 6in. Xy = 14in. X2 = Bin.
vy = 14in. yo = 42in. ¥y = 20in. y2 = 14in.
Cq = 4738 Co = 2,752 Cy = 10226 Cp = 736
XC = 4738 +2752 = 7490in4 IC = 10226 +736x 2 = 11,698in4

—_._.{’_
s r/TI(.‘H.\t‘f'ZhWSb\.\f"'ahf
. I 1
? . :fhf - 6"
™ i = "
% \)'& ‘ g Mwia
Dw
torsional 14"
member )

Figure 20-17 Attached Torsional Member at Interior Colurmn

For exterior columns:
K; = 9E; x 17,868/[264 (0.932)3] = 752E,

where C is taken as the larger value computed with the aid of Table 19-2 for the
torsional member shown in Fig. 20-18.

x; = 14in. Xo = 6 in. Xy = 14in, Xo = 6in.
¥y = 21in. yo = 35in. ¥y = 27in. yo = 211in.
Cy= 11141 Co = 2248 Ci = 16,628 Cp = 1240

IC = 11,141 +2,248 = 13,389in.4 2C = 16,628 + 1,240 = 17868 in*

c2|"(r: < 4 hy¢)
r‘ w m
\\‘%\\\\&&f h¢=6
torsional e < bw=21"
mernber/\ -~
14"

Figure 20-18 Altached Torsional Member at Exterior Column
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Example 20.2 (cont’d) Calculations and Discussion Reference

d. Increased torsional stiffness K, due to parallel beams:

For interior columns:

Ky, _ 493E, x 25,387

K, =
BT 4,752

= 2,034E,

For exterior columns:

752E, X 25,387

K,, =
@ 4,752

=4,017E;

where [; = moment of inertia of slab-section shown in Fig. 20-19.

264 (6)3/12 = 4,752 in4

Isp = moment of inertia of full T-section shown in Fig. 20-19 and computed with
the aid of Fig. 20-21

= 2.72 (14 x 203/12) = 25,387 in2

o] panel Q_ panei
T {2722-264"

RN RS %\\\\\\\\\\&\\\\\\m j][G"
T 14"

| 4
/ 14"
parailel beam

i P

Figure 20-19 Slab-Beam in the Direction of Analysis

¢.  Equivalent column stiffness, Ke.:

_ K, X ZK,

K.. =
7 3K, + 2K,

where XK, is for two torsional members, one on each side of column, and XK, is
for the upper and lower columms at the slab-beam joint of an intermediate floor.

For interior columns;

(303E, + 414E){2 x 2,634E,.)
303E, +414E) +(2x 2,634E)

Kec = ( = 631E,

For exterior columns:
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(323E. + 521E,){2 x 4,017E,)

= = 764E

Kee (3235c+521}3¢)+(2 x 4,017E,) ¢
f.  Slab-beam joint distribution factors DF:

At exterior joint:

= 497E, = 0.394

(497E, + T64E,)

At interior joint:
DF 97E = 0.306

" (497E, + 497E, + 631E,)
COF for slab-beam = 0.507
3. Partial frame analysis of equivalent frame.

Determine maximum negative and positive moments for the slab-beams using the mo-
ment distribution method.

With a service live-to-dead load ratio:

Lo s,3
D 75 4
the frame will be analyzed for five loading conditions with pattern loading and 13.7.6.3

partial live load as allowed by 13.7.6.3 (see Fig. 20-9 for an illustration of the five load
patterns considered).

a. Factored loads and fixed-end moments:

Factored dead load, qp, = 1.2 (75+9.3) = 101 psf

14 X - = 9.3 psf is weight of beam stem per foot divided by 32)

(14 x 14 150
Factored live load , qry = 1.6 (100) = 160 psf
Factored load, q, = qpy + 9rLu = 261 psf

FEM for slab-beams

If

mypQqefo£2 (Table Al, Appendix 20A)

FEM due to qp, + 9Ly 0.0842 (0.261 x 22) 17.52 = 148.1 ft-kips
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