EJEMPLOS DE DIMENSIONAMIENTO DE ESTRUCTURAS DE HORMIGON ARMADO SEGUN EL REGLAMENTO CIRSOC 201

- COLUMNA DE BORDE DE GRAN ESVELTEZ
- BASE AISLADA
- MENSULA CORTA
- ESQUINA DE PORTICO

ABRIL 1984
PROLOGO:

Este segundo cuadernillo de ejemplos de dimensionamiento tiene por finalidad continuar con la difusión de las distintas disposiciones contenidas en el Reglamento CIRSUC 201: "Proyecto, Cálculo y Ejecución de Estructuras de Hormigón Armado y Pretensado"; tarea emprendida en Abril de 1983, con la edición del primer cuadernillo de cálculo.
En esta publicación se han incorporado ejemplos sobre: columna de borde de gran esbeltez, base aislada, ménsula corta y esquinas de pórticos.

Al igual que en el primer cuadernillo se han utilizado como medios auxiliares de cálculo los Cuadernos 220 y 240 de la Comisión Alemana para el estudio del hormigón armado, publicados en castellano por el Instituto Argentino de Racionalización de Materiales y se han incluido las exigencias relativas a los aspectos constructivos y en especial las referidas a distribución de las armaduras.

Se espera que esta iniciativa contribuya a la difusión y correcta aplicación de los Reglamentos.

Abril 1984
ÍNDICE

EJEMPLO Nº 5. COLUMNA DE BORDE DE GRAN ESBELTEZ 1

1. Dimensiones, esquema y recubrimiento de hormigón 2
2. Cargas 4
3. Solicitaciones en el sistema no deformado 5
4. Rigidezespacial 6
5. Verificación de la seguridad a pandeo 6
6. Dimensionamiento 12
7. Colocación y disposición de la armadura 18

EJEMPLO Nº 6. BASE AISLADA 25

1. Dimensiones, recubrimiento de hormigón 26
2. Cargas 27
3. Solicitaciones 27
4. Dimensionamiento 29
5. Colocación y disposición de la armadura 33

EJEMPLO Nº 7. MENSULA CORTA 39

CASO A: MENSULA CORTA CON CARGA SUPERIOR DIRECTA 40
1. Dimensiones de los elementos
2. Cargas
3. Solicitaciones y dimensionamiento bajo las cargas de servicio
4. Seguridad a rotura por compresión en el alma
5. Verificación de las tensiones de corte
6. Zona de aplicación de la carga
7. Colocación de la armadura

CASO B: MENSULA CORTA CON INTRODUCCION DE LA CARGA EN FORMA INDIRECTA

1. Dimensiones de los elementos
2. Cargas
3. Solicitaciones y dimensionamiento
4. Verificación de la capacidad portante de la zona flexocomprimida
5. Colocación de la armadura

EJEMPLO Nº 8. ESQUINA DE PORTICO

CASO A: ESQUINA DE PORTICO, SOLICITADA POR UN MOMENTO POSITIVO

1. Esquema y cargas
2. Sección y recubrimiento de hormigón
3. Solicitaciones
4. Dimensionamiento
5. Colocación de la armadura
CASO B: ESQUINA DE PORTICO SOLICITADA POR UN MOMENTO NEGATIVO

1. Esquema y cargas
2. Secciones y recubrimiento de hormigón
3. Solicitaciones
4. Momentos adicionales debidos a los desplazamientos de las barras
5. Dimensionamiento
6. Colocación de la armadura
EJEMPLO 5. COLUMNA DE BORDE DE GRAN ESBELTEZ

Explicación

Se debe dimensionar una columna de borde de hormigón in situ destinada a una galería, y sometida a la acción de cargas predominantemente estáticas. La columna se encuentra empotrada en una zapata aislada, y las cargas que actúan sobre ella provienen de una viga premoldeada que apoya en forma articulada. Las cargas debidas a la cubierta y la aislación térmica se transmiten a la viga premoldeada a través de correas.

Se supone que el viento y las demás fuerzas que actúan en dirección longitudinal a la galería son absorbidas por otros elementos constructivos, y que la estructura se halla subdividida de tal manera por juntas de dilatación paralelas a las vigas premoldeadas, que no es necesario considerar las solicitudes por coacción transversales a las vigas.

También en la dirección de las vigas premoldeadas (dirección transversal de la galería) la longitud de la estructura se puede considerar suficientemente pequeña como para no tener en cuenta tampoco las solicitudes por coacción debidas a la temperatura y a la fluencia lenta, en especial a causa de la aislación térmica prevista y la construcción con elementos premoldeados.

Los tabiques externos de paneles de hormigón liviano se hallan ubicados del lado externo de las columnas de borde y las protegen de la acción de la intemperie.

CIRSOC 201, artículos 14.4.1. y 15.1.3.
Materiales:
- Hormigón H-21
- Barras de acero para hormigón tipo III ADM 420

1. DIMENSIONES, ESQUEMA, RECUBRIMIENTO DE HORMIGON

1.1. Sección de la galería

CIRSOC 201, artículo 6.6.2., tabla 3
CIRSOC 201, artículo 6.7., tabla 10
1.2. Extremo superior de la columna y conformación del apoyo

CIRSOC 201, artículo 19.5.4.

Línea R de apoyo de cálculo, ver CIRSOC 201, artículos 15.2. y 18.7.2., figura 17.

1.3. Sistema estático (dirección transversal)

Hipótesis: las excentricidades previstas de las cargas verticales son iguales en todas las columnas.
1.4. Recubrimiento de hormigón

Diámetros de barra adoptados: \(d_{s1} / d_{s\text{est}} = 25/8 \text{ mm} \)

\[c \leq \text{mín} = d_s + 5 \text{ mm} = 3,0 \text{ cm} \]

Tabla 15, renglón 1, columna 3: \(c_{\text{est}} = 1,5 \text{ cm} \)

\[c_{\text{est min}} + d_{s\text{est exist}} = 1,5 + 0,8 = 2,3 \text{ cm} < c \leq \text{mín} \]

Se adopta:

\[c_{\text{est}} = 2,5 \text{ cm para que } c_{\varphi} = 3,3 \text{ cm} > c \leq \text{mín} \]

2. CARGAS

Cargas verticales (reacción en el apoyo debido a la viga premoldeada):

- Carga permanente \(F_g = 377 \text{ kN} \)
- Carga de nieve: \(F_s = 68 \text{ kN} \)
- \(F_q = 445 \text{ kN} \)

No se tendrá en cuenta la carga propia de la columna

Cargas horizontales (viento):

Para simplificar, todas las cargas de viento se reúnen en una sola.

Carga de viento \(\pm 36 \text{ kN} \)
3. SOLICITACIONES EN EL SISTEMA NO DEFORMADO

En primera instancia, las solicitudes se calculan en base al sistema ideal no deformado (teoría de I orden). Cuando se efectúa la verificación de la seguridad al pandeo se consideran además las solicitaciones debidas a las deformaciones de la barra (teoría de II orden).

Se supone que en dirección transversal todas las columnas poseen la misma rígidez a flexión. De esta manera se puede suponer con suficiente exactitud que sobre la columna de borde actúa 1/4 de la fuerza del viento W.

Dado que la carga permanente, al igual que la carga de nieve q (constante sobre la superficie de la cubierta) actúan en forma simétrica sobre el sistema, se puede adoptar la suposición de un sistema no desplazable en lo que respecta a la simetría de cargas y del sistema para calcular las solicitudes debidas a g y a q de acuerdo con la teoría de a la carga permanente. I. orden.

\[N_g = -377 \text{ kN} \]
\[N_q = -68 \text{ kN} \]
\[N_w = 0 \]

\[EJ_0 = - \frac{6,2}{2} \]
\[53,6,2 = -1013,7 \]

\[EJ_1 = \frac{6,2^3}{3} = 79,4 \]
\[X_1 = \frac{\delta_{10}}{\delta_{11}} = \frac{1018,7}{79,4} = 12,82 \text{ kN} \]

\[M_{g_0} = -5,3 + 6,2 = 12,82 = 26,5 \text{ kN} \]
\[M_{g_1} = -53 \]
4. RIGIDEZ ESPACIAL

La estabilidad en la dirección longitudinal está asegurada por otros elementos constructivos (ver explicación). Sin embargo, en la dirección transversal no se han previsto elementos arriostrantes según CIRSOCC 201, artículo 18.5.1.; tampoco se presupone un arriostramiento recíproco de las columnas para resistir el pandeo. De esta manera la carga crítica actúa sobre todas las columnas, razón por la cual la verificación de la seguridad al pandeo no se efectúa para todo el sistema sino para cada columna en particular.

5. VERIFICACION DE LA SEGURIDAD A PANDEO (VSP)

5.1. Longitud de pandeo

Para el cálculo de la longitud de pandeo no se tendrá en cuenta el efecto de pórtico del sistema. La columna de borde se considera una columna aislada (extremo superior desplazable en dirección transversal):

\[s_k = \beta \cdot s = 2,0 \cdot 6,20 = 12,40 \, \text{m} \]

5.2. Esbeltez \(\lambda \) y excentricidad prevista de la carga e/d (reducida)

\[\lambda = \frac{s_k}{i} = \frac{s_k}{0,289 \cdot d} = \frac{12,40}{0,289 \cdot 0,40} = 108 > 70 \]

Elemento comprimido de gran esbeltez

CIRSOCC 201, artículo 18.5.

CIRSOCC 201, artículo 17.4. y Cuaderno 220, pág.150. artículo 4.
CIRSOCC 201, artículo 17.4.2. y Cuaderno 220, página 153, artículo 4.1.4. así como página 184, artículo 4.3.1.1.

No se presupone un empotramiento elástico de la columna en el suelo.

Cuaderno 220, página 187, artículo 4.3.1.1., figura 4.3.2., renglón 5.

Cuaderno 220, página 151, artículo 4.1.2., 5º párrafo.

CIRSOCC 201, artículo 17.4.1. 2º párrafo.
En el empotramiento:

\[
\frac{e}{d} = \frac{\sum M}{|\sum N|} \quad \frac{1}{d} = \frac{26,5 + 5,0 + 56,0}{377 + 68} = \frac{0,20}{0,40} = 0,5
\]

\[
< 3,5 \quad \frac{\lambda}{70} = 5,4
\]

CIRSOC 201, artículo 17.4.1., 3° párrafo.

Es necesario efectuar la verificación de la seguridad a pandeo según CIRSOC 201, artículo 17.4.4.

5.3. Fluencia lenta

5.3.1. Cálculo

Carga determinante:

Carga \(N_\phi \) que origina el fenómeno de fluencia = \(F_g \) (carga permanente) = 377 kN

Excentricidades de carga determinantes:

- excentricidad de carga prevista \(e_\phi = e \) (carga \(N_\phi \))
- excentricidad de carga no prevista \(e_\nu = s_k/300 \)

Con la siguiente fórmula y considerando estas influencias se calcula una excentricidad adicional \(e_k \) (excentricidad debida a la fluencia):

\[
e_k = (e_\phi + e_\nu) \left[2,718 \frac{0,8 \cdot \psi}{\nu - 1} - 1 \right] = e_{K\phi} + e_{K\nu}
\]

Cuaderno 220, página 171, artículo 4.2.2., ec(4.2.1).

Ambos factores de \(e_k \) se calculan en forma individual:
5.3.2. Excentricidad $e_{k,x}$ debida a la fluencia para una excentricidad prevista e

Bajo la acción de las cargas permanentes con las excentricidades previstas no se originan, debido a la simetría del sistema y de las cargas (ver esquema del sistema, artículo 1.3.), desplazamientos del extremo superior de la columna. La curva de flexión correspondiente de la columna de borde considerada corresponde a la curva de pandeo por flexión de una columna empotrada en su extremo inferior y no desplazable en el superior.

Al contrario del artículo 5.2., con $s_k = 0,7.s$ se obtiene una esbeltez:

$$\lambda = \frac{0,7.s}{1} = \frac{0,7 \cdot 6,20}{0,289 \cdot 0,40} = 38 < 70$$

De lo que resulta que para la excentricidad prevista no es necesario considerar una influencia debida a la fluencia lenta por acción de la carga permanente.

5.3.3. Excentricidad $e_{k,y}$ debida a la fluencia lenta, para una excentricidad e_y prevista

Esbeltez determinante: $\lambda = 108 > 70$

Excentricidad prevista para carga permanente en el sector determinante de la configuración de pandeo (punto de empotramiento):

$$\frac{e}{d} = \frac{M_g}{|N_g| \cdot d} = \frac{26,5}{377 \cdot 0,40} = 0,18 < 2$$
Para la excentricidad imprevista debe ser considerada la influencia debida a la fluencia lenta por acción de la carga permanente.

Fórmula para excentricidad e_{kv} debida a fluencia lenta

$$e_{kv} = e_v \left(\frac{s}{\sqrt{v-I}} - 1 \right)$$

Excentricidad imprevista e_v:

$$e_v = s_k/300 = 12.40/300 = 0.0414 \text{ m}$$

Coeficiente de fluencia φ_t:

$$\varphi = \varphi_{f0} (k_f,t - k_{f,t0}) + 0.4 \ k_v (t - t_0)$$

- Magnitud básica de fluencia $\varphi_{f0} = 2.7$
- Coeficiente de fluencia k_f, t y $k_{f,t0}$ en función de:
 a) espesor efectivo del elemento $d_{ef} = k_{ef} \cdot \frac{2 \ A}{u}$
 coeficiente de humedad $k_{ef} = 1.0$
 superficie de la sección de hormigón $A = 40 \cdot 40 = 1600 \text{ cm}^2$
 $u = 40 \cdot 4 = 160 \text{ cm}^2$
 $$d_{ef} = 1.0 \cdot \frac{2 \cdot 1600}{160} = 20 \text{ cm}$$
 b) tipo de cemento y velocidad de endurecimiento: normal, endurece bajo temperatura ambiente.
c) edad del hormigón para la carga de la columna (supuesta):
 \(t_0 = 14 \) días
Se ve de la figura 59 de CIRSOC 201

\(k_{f,t} = 1,55 \) para \(t = \infty \)

\(k_{f,t_0} = 0,50 \) para \(t_0 = 14 \) días

\(- k_{t,t_0} (t - t_0) \) (coeficiente para deformación elástica retardada) = 1,0

\(\psi_t = 2,7(1,55 - 0,50) + 0,4 . 1,0 = 3,2 \)

Seguridad a pandeo \(\nu \), referida a la carga de pandeo \(N_E \) de Euler:

\[
\nu = \frac{N_E}{N_\phi} = \frac{\pi^2 \psi_t (EI)}{s_k^2} \frac{1}{(N_\phi)}
\]

\(\psi_t = (0,6 + 20 \, \text{tot} \, \mu_0) \, E_b \cdot I_b \)

\(\text{tot} \, \mu_0 = 2,0\% \) (estimada)

\(E_b = 30 \, 000 \, \text{MN/m}^2 = 3,0 . 10^4 \, \text{MN/m}^2 \)

\(I_b = b \cdot d^3/12 = 0,4^3/12 = 21,3 \cdot 10^{-4} \, \text{m}^4 \)

\(\psi_t = (0,6 + 20 \cdot 0,02) \cdot 3,0 \cdot 21,3 = 63,9 \, \text{MN.m}^2 \)

\(|N_\phi| = F_g = 377 \, \text{kN} = 0,377 \, \text{MN} \)

t_0: edad efectiva del hormigón al aplicar la carga (tensión)
t: edad efectiva del hormigón al momento del estudio

CIRSOC 201, artículo 26.8.3. 4° y 5° párrafo.

Cuaderno 220, página 171, 4.2.2.

Cuaderno 220, página 171, ec.(4.2.2.): rigidez a flexión efectiva.

Cuaderno 220, pág.17,art. 1.2.1.3.:\(\mu_0 = E_A / A_b \)

CIRSOC 201, artículo 17.4.7., 2° párrafo: carga permanente en estado de servicio.
\[\nu = \frac{\pi^2 \cdot 63.9}{12.60^2} \cdot \frac{1}{0.377} = 10.9 \]

\[e_{k\nu} = 0.0414 \cdot (2,718 - 1) = 0.012 \text{ m} \]

Excentricidad total:

\[e_k = e_{k\nu} = 0.012 \text{ m} \]

Tanto la excentricidad \(e_k \) como \(e_{\nu} \) se deben considerar en forma adicional a la excentricidad de carga \(e \).

5.4. Ejecución de la verificación de la seguridad a pandeo

La verificación de la seguridad a pandeo se efectúa en el tercio medio de la configuración de pandeo (en el empotramiento) como "dimensionamiento para pandeo", y con ayuda de los nomogramas de dimensionamiento (ver el punto 6; dimensionamiento) desarrollados para elementos comprimidos con \(\lambda > 70 \). Utilizando estos nomogramas no es necesario considerar la excentricidad imprevista \(e_{\nu} \), ya que ha sido tomada en cuenta al diseñar los mismos. La excentricidad \(e_{k\nu} \) debida a la fluencia lenta se considera, de acuerdo con el capítulo 3, como momento adicional a los ya previstos.

\[\Delta M_{k\nu} = e_k |N_g| = 0.012 \cdot 377 = 4.52 \text{ kNm} \]

\[\Delta M_{kq} = e_k |N_q| = 0.012 (377 + 68) = 5.34 \text{ kNm} \]

Respecto de la elección del procedimiento ver el Cuaderno 220, pág. 158, 4.1.7., fig. 4.1.2.

Cuaderno 220, pág. 164, 4.1.9 y pág. 199 hasta 262 tablas 4.1.a hasta 4.31 b
6. DIMENSIONAMIENTO

\[\beta_{SR} = \frac{\beta_S}{\beta_R} = \frac{420 \text{ MN/m}^2}{17,5 \text{ MN/m}^2} = 24 \]

\[d_1 = c_{est} + d_{s \text{ est}} + 0,5 \cdot d_{s \ell} = 2,5 + 0,8 + 1,3 = 4,6 \text{ cm} \]

\[d_1 = 40 \text{ cm} \]

\[\frac{d_1}{d} = \frac{d_2}{d} = 0,11 = 0,10 \]

CIRSOC 201, artículo 17.2., fig. 8 y tabla 17

\[d_1 = \text{distancia desde el borde hasta las barras longitudinales ver Cuaderno 220, página 15, fig. 1.3.} \]

6.1. Solicitaciones para el dimensionamiento

Empotramiento (abajo):

- Caso de carga g + s + w + k

\[M = 26,5 + 5,0 + 56,0 + 5,3 = 92,8 \text{ kNm} \]

\[N = -377 - 68 = -445 \text{ kN} \]

- Caso de carga g + w + k

\[M = 26,5 + 56,0 + 4,5 = 87 \text{ kNm} \]

\[N = -377 = -377 \text{ kN} \]

Extremo superior (cabeza de la columna) (50 cm por debajo del apoyo de la viga premoldeada):

- Caso de carga g + s + w

\[M = -47,0 - 8,8 - 4,5 = -60,3 \text{ kNm} \]

\[N = -377 - 68 = -445 \text{ kN} \]

Determinante

Carga completa y viento

= 0,0928 MNm

= -0,445 MN

Carga permanente y viento

= -0,0603 MNm

= -0,445 MN
- Caso de carga g + s

\[
M = -47.0 - 8.8 = -55.8 \text{ kNm}
\]
\[
N = -377 - 68 = -445 \text{ kN}
\]

6.2. Dimensionamiento en el embotamiento (abajo)

Se distingue entre el dimensionamiento normal para las solicitudes del sistema no deformado y el "dimensionamiento a pandeo" correspondiente a la verificación de la seguridad a pandeo.

- Dimensionamiento normal:

No será necesario, debido a que por ser \(\lambda > 50 \) no es necesario verificar que al efectuar el dimensionamiento a pandeo no se excedan las solicitudes admisibles para el dimensionamiento normal.

- Dimensionamiento para pandeo:

Acero ADM-420, \(d_1/d = d_2/d = 0.10 \)

Dimensionamiento con el nomograma de la tabla 4.3.a

Solicitudes reducidas:

\[
\eta = \frac{N}{A_b \cdot \beta_R} = \frac{-0.455}{0.4^2 \cdot 17.5} = -0.159
\]

\[
m = \frac{M}{A_b \cdot d \cdot \beta_R} = \frac{0.0933}{0.4^3 \cdot 17.5} = 0.083
\]

Carga completa sin viento

"Dimensionamiento normal" ver Cuaderno 220, pág. 150, 4.1.1., 1° párrafo y pág. 158, 4.1.7., figura 4.1.2.

En general, esta verificación se debe realizar porque las tablas para el dimensionamiento normal se basan en el coeficiente de seguridad variable y los nomogramas en el coeficiente de seguridad constante \((\gamma = 1.75) \). Respecto del límite \(\lambda = 50 \), ver el Cuaderno 220, pág. 165, 4.1.9., 3° párrafo.

CIRSOC 201, artículo 17.4.4., y Cuaderno 220, pág. 164, 4.1.9.

Cuaderno 220, tabla 4.3.a

Nota: en la 2ª edición corregida del Cuaderno 220 en castellano (IRAM, 1981), en la página 205 se ha incluido erróneamente con el número 4.3.a la tabla 4.4.a, que es para \(d_1/d = 0.15 \), por lo tanto no aparece la tabla 4.3.a para \(d_1/d = 0.10 \). Hemos utilizado la correspondiente del alemán y se adjunta en la página 22 de este trabajo.
Excentricidad reducida (e = tot e):
\[
\frac{e}{d} = \frac{m}{|n|} = \frac{0,083}{0,159} = 0,52 < 2,0
\]
\[
\frac{s_k}{d} = \frac{12,40}{0,40} = 31 < 45
\]
de la tabla 4.3.a:
\[
tot \omega_0 = \frac{tot A_s}{A_b} \beta_{SR} = 0,60 < 1,0
\]
\[
tot \mu_0 = \frac{tot \omega_0}{\beta_{SR}} = \frac{0,60}{24} = 0,025 = 2,5\%
\]
\[
> \text{mín tot } \mu_0 = 0,8\%
\]
\[
< \text{máx tot } \mu_0 = 9,0\%
\]
tot \(A_s\) = tot \(\mu_0 \cdot b \cdot d = 0,025 \cdot 40 \cdot 40 = 40 \text{ cm}^2\)

Se adopta:

Acero tipo III 4 \(\phi 25\) por media sección
\(A_{s1} \text{ exist} = A_{s2} \text{ exist} = 19,6 \text{ cm}^2 \approx 1/2 \text{ tot } A_s\)

Se puede emplear el nomograma, debido a que no se alcanzan los valores límite para \(e/d\), \(\omega_0\) y \(s_k/d\).

Ver también nomograma abajo, página 22, punto 1
\(\beta_{SR} = \beta_s/\beta_R = 24\)

CIRSOC 201, artículo 25.2.2.1., 1º párrafo
6.3. Dimensionamiento 50 cm por debajo del apoyo de la viga premoldeada

Dimensionamiento normal para flexión y esfuerzo longitudinal con el diagrama M/N para secciones con armadura simétrica y fuerza de compresión con poca excentricidad

\[n = \frac{N}{A_b \cdot \beta_R} = \frac{-0.445}{0.40^2 \cdot 17.5} = -0.159 \]

\[m = \frac{M}{A_b \cdot d \cdot \beta_R} = \frac{0.0603}{0.40^3 \cdot 17.5} = 0.054 \]

Acero ADM-420, \(d_1/d = d_2/d = 0.10 \)

de la tabla 1.11.b: \(\omega_{01} = \omega_{02} < 0.02 \)

\(\omega_{01} \) neces = \(\mu_{02} \) neces = 0.02/24 = 0.08% < \(\mu_0 \) mín = 0.4%

Debido a que al aplicar los nomogramas para dimensionamiento a pandeo (artículo 6.2.) las secciones de las barras y el porcentaje de armadura deben ser aproximadamente constantes a lo largo de toda la longitud de pandeo, se colocará la armadura necesaria en el empotramiento (2 x 4 ϕ 25) a lo largo de toda la altura de la columna.

Sección ubicada debajo de la zona de introducción de la carga (zona afectada)

\[e/d = m/|n| = \frac{0.054}{0.159} = 0.34 < 3.5 \]

Cuaderno 220, página 53, tabla 1.11.b
CIRSOC 201, artículo 25.2.2.1., 1º párrafo.

Cuaderno 220, página 166, 4.1.9., anteúltimo párrafo.
6.4. **Empotramiento en la fundación**

Para la verificación de la seguridad a pandeo se ha supuesto un empotramiento de la columna en la fundación, por lo que la zapata se deberá dimensionar también para los momentos de deformación (solicitud adicional) provenientes de la columna.

El momento total según la teoría de 2º orden se encontrará en el manograma con la curva 2.

Se lee: \(m = 0,192 \) con \(n = -0,159 \) (no modificado)

\[M_{II} = m \cdot A_b \cdot d \cdot \beta_R = 0,192 \cdot 0,4^2 \cdot 0,4 \cdot 17,5 = 0,215 \text{ MNm} = 215 \text{ kNm} \]

El dimensionamiento de la fundación no es objeto de este ejemplo.

6.5. **Zona de introducción de cargas debajo de los apoyos de las vigas premoldeadas**

Verificación de las tensiones de compresión y de las armaduras para los esfuerzos de hendidura por tracción debidos a la carga \(F_q \), que actúa en forma excéntrica respecto del eje de la columna y también de la superfi cie del apoyo. Se sustituye la hipótesis de reacción triangular en el apoyo por reacciones uniformemente distribuidas, que resultante posee la misma magnitud y línea de acción (ver esquema):

Superficie de apoyo sustitutiva: \(A_1 = d_1 \cdot b_1 = 10 \cdot 36 = 360 \text{ cm}^2 \)

\[\sigma_1 \text{ exist} = \frac{F_q}{A_1} = \frac{0,445}{0,036} = 12,4 \text{ MN/m}^2 \]

La tensión admisible \(\sigma_1 \) de H-21 no es suficiente.

CIRSOC 201, artículo 17.4.5. y Cuaderno 220, página 154, 4.1.5. "Elementos que aseguran el empotramiento".

\[M_{II} = M_I + \Delta M \]

Cuaderno 220, página 166, 4.1.9., último párrafo

Cuaderno 220, tabla 4.3.a. y esquema de la página 22 (ver nota en la página 13)

Cuaderno 240, página 91 hasta 93, artículos 5.1. hasta 5.3.

Otra solución más práctica es zunchar el hormigón debajo de la placa de introducción del esfuerzo. Dado que la placa tiene una dimensión mucho mayor que la otra (36 cm x 10 cm), se colocan cuatro zunchos de \(\phi 4,2 \), diámetro de cada zuncho = 6 cm, paso de la hélice = 3 cm.

El hormigón H-21 toma un esfuerzo de 345 kN.

El incremento de esfuerzo que se puede tomar se calcula por cualquier procedimiento válido, por ejemplo, como columna zunchada \(\Delta N = 113 \text{ kN} \).
Reacción admisible en el apoyo, como tensión de compresión admisible incrementada para el caso de carga localizada, cuando se prevé hormigón H-30 en la zona de apoyo (en una altura de aproximadamente 30 cm):

\[\sigma_1 \text{ adm} = \frac{\beta_R}{2.1} \sqrt{\frac{A_2}{A_1}} = \frac{23}{2.1} \sqrt{\frac{480}{360}} = 12.6 \text{ MN/m}^2 > \sigma_1 \text{ exist} \]

con \(A_2 = d_2 \cdot b_2 = d_s \cdot b_2 = 12 (36 + 4) = 480 \text{ cm}^2 \)

Resultantes de las tensiones de tracción de borde y de hendidimiento por tracción:

\[Z_S = 0.25 \cdot F_q \left(1 - \frac{d_1}{d_s} \right) = 0.25 \cdot 445 \left(1 - \frac{10}{12} \right) = 18.5 \text{ kN} \]

\[Z_R = F_q \left(\frac{e}{d} - \frac{1}{6} \right) = 445 \left(\frac{14}{40} - \frac{1}{6} \right) = 81.6 \text{ kN} \]

\[Z_{S2} = 0.3 \cdot Z_R = 0.3 \cdot 81.6 = 24.5 \text{ kN} \]

Armadura necesaria: \(\sigma_s \text{ adm} = \frac{\beta_s}{1.75} = 24 \text{ kN/cm}^2 \)

(Acero tipo III)

\[A_{Ss} \text{ neces} = \frac{Z_S}{\sigma_s \text{ adm}} = 18.5/24 = 0.8 \text{ cm}^2 \]

\[A_{SR} \text{ neces} = \frac{Z_R}{\sigma_s \text{ adm}} = 81.6/24 = 3.4 \text{ cm}^2 \]

\[A_{Ss2} \text{ neces} = \frac{Z_{S2}}{\sigma_s \text{ adm}} = 24.5/24 = 1.0 \text{ cm}^2 \]
Se adopta:

<table>
<thead>
<tr>
<th>Z_S</th>
<th>Acero tipo III</th>
<th>1 estribo ϕ 8 (dos ramas)</th>
<th>$= 1,0 \text{ cm}^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_R</td>
<td>Acero tipo III</td>
<td>2 ϕ 16</td>
<td>$= 4,0 \text{ cm}^2$</td>
</tr>
<tr>
<td>Z_{S_2}</td>
<td>Acero tipo III</td>
<td>1 estribo ϕ 8 (dos ramas)</td>
<td>$= 1,0 \text{ cm}^2$</td>
</tr>
</tbody>
</table>

7. COLOCACION Y DISPOSICION DE LA ARMADURA

7.1. Armadura longitudinal

Diámetro de las barras longitudinales:

$d_{s_{G}}$ exist $= 25 \text{ mm} > d_{s_{G}}$ mín $= 12 \text{ mm}$

Separación máxima entre las barras internas y las esquinas:

$s_e \leq 15.d_{s}$ est $= 15 \cdot 0,8 = 12 \text{ cm} \ (d_{s}$ est ver más adelante)

Longitud básica de anclaje:

$$k_0 = \alpha_0 \cdot d_s$$

con $\alpha_0 = \frac{\beta_s}{7 \cdot \tau_{1 \text{ adm}}}$

H-21, Acero tipo III, $d_{s_{G}} = 25 \text{ mm}$ (vertical), zona de adherencia I: $\tau_{1 \text{ adm}}$: CIRSOC 201, artículo 18.4., 3º párrafo y tabla 24.

CIRSOC 201, artículo 25.2.2.1., tabla 37, para espesor de columna $d \geq 20 \text{ cm}$

CIRSOC 201, artículo 25.2.2.2., fig. 58.
Longitud de anclaje l_1 superior (debajo del apoyo de la viga):

extremos rectos

$$l_1 = \alpha_1 \cdot \alpha_A \cdot l_0 \geq 10 \cdot d_{s\ell}$$

$$\alpha_A = \frac{A_s \text{ neces}}{A_s \text{ exist}} = \frac{0}{19,6} = 0$$

$$l_1 = 10 \cdot d_{s\ell} = 10 \cdot 2,5 = 25 \text{ cm}$$

Empalme por yuxtaposición sometido a tracción en la base de la columna (zona de tracción):

empalme completo (100%), extremos rectos, zona de adherencia I:

$$l_e = \alpha_e \cdot l_1 = \alpha_e \cdot \alpha_1 \cdot \alpha_A \cdot l_0 \geq 15 \cdot d_s$$

$$\geq 20 \text{ cm}$$

$$\alpha_e = 2,2 \quad \text{para} \quad d_{s\ell} = 25 \text{ mm} > 16 \text{ mm}$$

$$\alpha_1 = 1,0$$

$$\alpha_A = \frac{A_s \text{ neces}}{A_s \text{ exist}} = \frac{20,0}{19,6} = 1,0$$

$$l_e = 2,2 \cdot 1,0 \cdot 1,0 \cdot 0,83 = 183 \text{ cm} > 15 \cdot d_s = 38 \text{ cm}$$

Empalme por yuxtaposición sometido a compresión en la base de la columna (zona de compresión):

$$l_{eC} = l_0 = 83 \text{ cm} < l_{eT} = 183 \text{ cm}$$
Para evitar equivocaciones durante la colocación en obra, los empalmes comprimidos y los estribos que se encuentran en la zona de empalme se colocarán de la misma manera que los empalmes traccionados.

7.2. Estribos

Estribos en la zona normal:

Diámetro:

\[d_s \text{ exist } = 25 \text{ cm } > 20 \text{ cm } : d_s \text{ est mín } = 8 \text{ mm} \]

Separaciones:

\[s_{est \text{ máx } \leq d} = 40 \text{ cm } \leq 12 \cdot d_{s,\text{ exist }} = 12 \cdot 2,5 = 30 \text{ cm} \]

Se adopta:

Acero tipo III φ 8, \(s_{est} = 30 \text{ cm} \)

Los estribos se ejecutarán de acuerdo con CIRSOC 201, artículo 25.2.2.2., figura 57.

Diámetro del mandril de doblado: \(d_{br} = 4 \cdot d_s \text{ est } = 3,2 \text{ cm} \)

Debido a que \(l_{eC} < l_{eT} \) se considera satisfecho el requisito que indica que para los empalmes de compresión se debe disponer un estribo en el extremo del empalme fuera de la zona de empalme.

CIRSOC 201, artículo 18.6.3.4., último párrafo.

CIRSOC 201, artículo 25.2.2.2., 2º párrafo

CIRSOC 201, artículo 25.2.2.2., figura 57

Se cumple el requisito respectivo según CIRSOC 201 artículo 25.1. \((e/d < 3,5 \cdot \lambda/70) \) (ver punto 6).
Estribos en la zona de yuxtaposición del empalme traccionado de las barras longitudinales:

\[\sum A_s \text{ est neces} = A_s \& 1 \text{ (para } l + 25) = 4.9 \text{ cm}^2 \]

Se adopta:

<table>
<thead>
<tr>
<th>Acero tipo III estribos (\phi 8) (2 ramas) = 11 cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_{\text{est}} = 15 \text{ cm en la zona de extremos } l_e/3 = 61 \text{ cm})</td>
</tr>
</tbody>
</table>

Los ganchos de los estribos se deberán desplazar, en lo posible, de posición a lo largo de la columna.

CIRSOC 201, artículo 18.6.3.4.: Debido a que el empalme es completo, el dimensionamiento se realiza para el esfuerzo de una barra.

CIRSOC 201, artículo 18.6.3.4., último párrafo.

CIRSOC 201, artículo 25.2.2.2., primer párrafo.

CIRSOC 201, artículo 18.6.3.4., último párrafo.
En el nomograma se tuvo en cuenta el efecto de la deformación previa y según DIN 1045, Apart. 17.4.6

Tabla 4.3a

Nomograma para el cálculo de la barra standard.
En la zona del extremo superior de la columna, debajo del apoyo de la viga se prevé hormigón H-30 (o se zuncha el hormigón)

EJEMPLO 5
COLUMNA DE BORDE DE GRAN ESBELTEZ

Disposición de la armadura

Materiales: H-21
Acero tipo III
Recubrimiento: 25 cm
EJEMPLO 6. BASE AISLADA

Explicación

Se debe dimensionar una fundación aislada para una columna con carga centrada. Ha sido diseñada como una losa de hormigón armado de espesor constante. Las condiciones ambientales se estiman de acuerdo con el CIRSOC 201, tabla 15, renglón 3, columna 4. La carga es predominantemente estática.

Materiales:

- Hormigón H-21
- Barras de acero para hormigón armado tipo III ADM-420

Presión admisible del suelo: $\sigma_0 \text{ adm} = 260 \text{ kN/m}^2$
1. DIMENSIONES, RECUBRIMIENTO DE HORMIGÓN

Corte vertical II - II

Planta

Recubrimiento de hormigón

CIRSOC 201, artículo 13.2.1., figura 1 y tabla
se adopta: $c_2 = 2.5$ cm, suficiente para $d_b \leq 20$ mm y suelo no agresivo. 15, renglón 3
Altura Ótil

Hipothesis para los diámetros de las barras: \(d_s = 20 \text{ mm} \)

\[
\begin{align*}
 h_x &= d - c_2 - d_s/2 = 60,0 - 2,5 - 2,0/2 = 56,5 \text{ cm} \\
 h_y &= h_x - d_s = 56,5 - 2,0 = 54,5 \text{ cm} \\
 h_m &= (h_x + h_y)/2 = (56,5 + 54,5)/2 = 55,5 \text{ cm}
\end{align*}
\]

\(h_m \) para la verificación de la seguridad contra el punzonado (ver CIRSOC 201, artículo 22.5.2.)

2. CARGAS

Carga centrada proveniente de la fuerza longitudinal de la columna:

\(N_{St} = 1350 \text{ kN} \)

Presión del suelo, supuesta con distribución uniforme:

\[
\begin{align*}
 \sigma_0_g &= d \cdot \gamma_b = 0,6 \cdot 25 = 15 \text{ kN/m}^2 \\
 \sigma_0_p &= N_{St}/b^2 = 1350/2,40^2 = 234 \text{ kN/m}^2 \\
 \text{suma:} \quad \sigma_0_q &= 249 \text{ kN/m}^2 < \sigma_0 \text{ adm} = 260 \text{ kN/m}^2
\end{align*}
\]

3. SOLICITACIONES

Momentos flexores:

sobre los cortes I - I y II - II

\[
\begin{align*}
 M_x = M_y = M = N_{St} \cdot \frac{a^2}{2 \cdot b} = 1350 \frac{1,00^2}{2 \cdot 2,40} = 281 \text{ kNm}
\end{align*}
\]

producido por la tensión \(\frac{N_{St}}{b} \) del suelo en el borde de la columna
Esfuerzos transversales:

Para la verificación de la seguridad contra punzonado se considera determinante el esfuerzo transversal Q_r en el círculo de diámetro d_r (ver esquema). Se debe calcular en base a las presiones del suelo que actúan fuera de la zona del cono de punzonado (diámetro d_k).

Diámetro de una columna de sección circular de igual superficie

$$d_{st} = 1,13 \sqrt{b_{st}^2} = 1,13 \cdot 40 = 45,2$$

Diámetro de la sección:

$$d_r = d_{st} + h_m = 45,2 + 55,5 = 101 \text{ cm}$$

Diámetro inferior del cono de punzonado:

$$d_k = d_{st} + 2 \cdot h_m = 45,2 + 2 \cdot 55,5 = 156 \text{ cm}$$

Esfuerzo transversal una vez deducidas las presiones del suelo sobre el círculo d_k:

$$\max Q_r = N_{st} - \sigma \cdot d_k^2 \cdot \frac{\pi}{4} = 1350 - 234 \cdot 1,56^2 \cdot \frac{\pi}{4} = 902 \text{ kN}$$
4. DIMENSIONAMIENTO

Hormigón H-21 \[\beta_R = 17.5 \text{ MN/m}^2 \]
Acero para hormigón tipo III \[\beta_S = 420 \text{ MN/m}^2 \]

CIRSOC 201, artículo 17.2.1.

4.1. Dimensionamiento a flexión

La distribución no uniforme de los momentos flectores sobre el ancho de la zapata se tiene en cuenta según el Cuaderno 240:

\[cy/b_y = b_{st}/b = 40/240 = 0.17 \approx 20 \]

\[\alpha_M = 18\% / 14\% / 10\% / 8\% \]

\[\alpha_M = \text{porcentajes del momento total} \]

Cuaderno 240, pág. 54, 2.5.2.1., tabla 2.10.
Dirección y:

\[k_h = \frac{h_y}{\sqrt{\frac{\alpha_M \cdot M}{b/8}}} = \frac{54.8}{\sqrt{\frac{0.18 \cdot 281}{2.40/8}}} = 4.22 > k_h^* = 1.72 \]

tomando de la tabla 1.7a: \(k_S = 4.4 \)

\[A_{sy} = \frac{M_S}{h_y} \cdot k_S = \frac{281}{54.5} \cdot 4.4 = 22.7 \text{ cm}^2 \text{ (armadura total)} \]

Dirección x:

\[A_{sx} \approx A_{sy} \frac{h_y}{h_x} = 22.7 \cdot \frac{54.5}{56.5} = 21.9 \text{ cm}^2 \]

Distribución de los momentos flectores sobre el ancho b de la zapata, distribución correspondiente de la armadura

Ancho de la zapata en el centro de la fracción = \(b/8 = 0.30 \text{ m} \)

la armadura calculada se distribuye proporcionalmente a los porcentajes de momento.

Cuaderno 240, página 53, 2.5.2.1.

Valores determinantes \(\alpha_M \) en porcento del momento total, para las franjas individuales.
4.2. Verificación de la seguridad contra el punzonado

Distinción de casos:

a) Cuando el borde de la zapata se encuentra ubicado dentro de un cono de punzonado de relación 1:2 (ver figura), la zapata se podrá ejecutar sin armadura.

b) Cuando esta relación es de 1:1, no será necesario efectuar la verificación de la seguridad contra el punzonado (ver figura).

c) Para las zapatas cuya superficie de contacto es mayor que la de un cono de relación 1:1, regirá la misma limitación de las tensiones de corte que en el caso de losas con apoyos puntuales según CIRSOC 201, artículo 22.5. (ver figura).

Esbeltex de la zapata en este caso: \(\frac{a}{d} = \frac{1,00}{0,60} = 1,7:1 > 1:1 \)

Las tensiones de corte se deben limitar según CIRSOC 201, artículo 22.5.2.

Para la sección circular rige CIRSOC 201, artículo 22.5.1.1.:

\[
\begin{align*}
\tau_r &= \frac{\max Q_r}{u \cdot h_m} = \frac{0,897}{3,17 \cdot 0,557} = 0,51 \text{ MN/m}^2 \\
\end{align*}
\]

CIRSOC 201, artículo 22.5.1.1. ec.(46)

Tensión admisible sin considerar la armadura de corte:

\[
\tau_{r1 \text{ adm}} = \kappa_1 \cdot r_{011} = 1,3 \alpha_s \sqrt{\mu_g} \cdot \tau_{011}
\]
\(\tau_{011} = 0,5 \text{ MN/m}^2 \) para armadura no escalonada

\(\alpha_s = 1,3 \) para acero tipo III

\(\mu_g \) es el porcentaje de armadura existente en la sección de diámetro \(d_r \), obtenido de:

\[
\mu_g \text{ exist } = \frac{A_s}{(d_r \cdot h_m)} = \frac{A_{sx} + A_{sy}}{2} \cdot (0,18 + 0,14 \cdot \frac{20,5}{30,0}) \cdot 2 \cdot \frac{1}{d_r \cdot h_m} = \frac{21,9 + 22,6}{2} \cdot 0,276 \cdot 2 \cdot \frac{1}{101 \cdot 55,7} = 0,22\%
\]

\(\tau_{r1} \text{ adm } = 1,3 \cdot 1,3 \cdot \sqrt{0,22} \cdot 0,5 = 0,40 \text{ MN/m}^2 \)

\(< \tau_r \text{ exist } = 0,51 \text{ MN/m}^2 \)

Para evitar la armadura de corte se incrementa el porcentaje de armadura de la siguiente manera:

\[
\tau_{r1} \text{ adm } = \tau_r \text{ exist } = 1,3 \cdot \alpha_s \sqrt{\mu_g \text{ neces } \cdot \tau_{011}}
\]

\[
\mu_g \text{ neces } = \left(\frac{\tau_r \text{ exist}}{1,3 \cdot \alpha_s \cdot \tau_{011}} \right)^2 = \left(\frac{0,51}{1,3 \cdot 1,3 \cdot 0,5} \right)^2 = 0,37 \%
\]

\(> \mu_g \text{ exist } = 0,22\% \)
4.3. **Armadura de flexión necesaria en la sección circular**

Debido a que u_g neces $> u_g$ exist, en la zona de la sección circular, se debe incrementar la armadura a flexión en ambas direcciones x e y:

$$\Delta A_s = (u_g \text{ neces} - u_g \text{ exist}) \cdot d_r \cdot h_m$$

$$= \frac{0.37 - 0.22}{100} \cdot 101 \cdot 55.7 = 8.4 \text{ cm}^2$$

A_{sx} neces $= 21.9 + 8.4 = 30.3 \text{ cm}^2$

A_{sy} neces $= 22.6 + 8.4 = 31.0 \text{ cm}^2$

Se adopta:

| en cada dirección (x e y) |
| Acero tipo III | 8 ϕ 20 + 6 ϕ 12 |
| A_{sx} exist $= A_{sy}$ exist $= 31.9 \text{ cm}^2$ |

5. **COLOCACION Y DISPOSICIÓN DE LA ARMADURA**

5.1. **Longitudes básicas de anclaje**

Para todas las barras se considera zona de adherencia I:

$$\ell_0 = \alpha_0 \cdot d_s = \frac{\beta_\theta}{7 \cdot \tau_{1 \text{ adm}}} \cdot d_s = \frac{420}{7 \cdot 1.8} \cdot d_s = 33.3 \cdot d_s$$

CIRSOC 201, artículo 18.5.2.1., ec.(29)

CIRSOC 201, artículo 18.4., tabla 24, renglón 3
5.2. Anclaje de la armadura de flexotracción

Se considera nulo el momento en el borde de la zapata. La armadura de flexotracción se ancla en el punto \(x_0 = c_2 + l_{br} = 2.5 + 6 = 8.5 \) cm para \(c_2 = \) recubrimiento de hormigón ra absobr el esfuerzo de tracción de la curva M/z decalada en \(v \) hacia afuera, así como también para tomar el esfuerzo de tracción de la armadura adicional de flexotracción adoptada en lugar de una armadura de corte:

\[
v = 1.0 \cdot h \approx h_m = 56 \text{ cm (para losa sin armadura de corte)}
\]

\[
M_{x0} = N_{st} \frac{(x_0 + v)^2}{2 \cdot b} = 1350 \frac{0.64^2}{2 \cdot 2.4} = 115 \text{ kNm}
\]

\[
A_{S, x_{0 \text{ nec}}} = \frac{M_{x0}}{M_{x3}} \cdot \frac{A_{S_y \text{ nec}} + \Delta A_S}{\frac{115}{281}} \cdot 22.6 + 8.4 = 17.6 \text{ cm}^2
\]

\[
\text{requerida para } \alpha_A = \frac{A_s \text{ neces}}{A_s \text{ exist}}
\]

desfavorable según CIRSOC 201, artículo 18.7.2.
Anclaje con ganchos en ángulo:

\[l_1 = \alpha_1 \cdot \alpha_A \cdot \alpha_0 \cdot d_s \geq l_{br} \]

\[l_1 \text{ nec} = 0,7 \cdot \frac{17,6}{32,5} \cdot 33,3 \cdot 2,0 = 25,2 \text{ cm} > 5,4 \text{ cm} \]

Como longitud de la rama recta del gancho se adopta: \(10 \cdot d_s \)

De esta manera se obtiene:

\[l_1 \text{ exist} = l_h = l_{br} + 10 \cdot d_s = 5,4 + 10 \cdot 2,0 = 25,4 \text{ cm} > l_1 \text{ nec} \]

Para tomar las tensiones de hendidón por tracción en la zona de anclaje se dispone con fines constructivos dentro de la zona de doblado una barra transversal de \(\phi 8 \text{ mm} \), en los cuatro bordes.

5.3. Empalme con la armadura de la columna

Hipótesis para la armadura longitudinal de la columna a la altura del borde superior de la zapata:

\[A_s \text{ exist} = 4 \cdot \phi 25 \text{ (Acero tipo III)} \]

del dimensionamiento de la columna

Estas barras comprimidas se dividen en armadura de empalme y armadura de la columna.

Anclaje de la armadura de empalme en la zapata:

Longitud de anclaje \(l_1 \) para barras comprimidas con extremos rectos:

\[l_1 = \alpha_1 \cdot \alpha_A \cdot \alpha_0 \cdot d_s \geq 10 \cdot d_s \]

\[= 1,0 \cdot 0,5 \cdot 33,3 \cdot 2,5 = 42 \text{ cm} > 25 \text{ cm} = 10 \cdot d_s \]
Empalme por yuxtaposición entre ambas armaduras

\[\lambda_e = \lambda_0 = \alpha_0 \cdot d_S = 33,3 \cdot 2,5 = 83 \text{ cm} \]
DIAMETRO DEL MANDRIL DE DOBLADO
CIRSOC 201
18.3.1.
Tabla 23

EJEMPLO 13
BASE AISLADA
Representación de la armadura
Materiales: H-21
Acero tipo III
Recubrimiento de hormigón: 2,5 cm
Ejemplo N°: 7

MENSULA CORTA

Se dimensiona una ménsula corta unida rígidamente a una columna de hormigón armado. Ambos elementos se hallan a la intemperie. En este ejemplo no se considera la transmisión de los esfuerzos a la columna.

Se distinguen dos casos:

Caso A: ménsula corta solicitada por una carga no predominantemente estática aplicada en forma directa.

Caso B: ménsula corta solicitada por una carga predominantemente estática aplicada en forma indirecta

Materiales:

- Hormigón H-21 $\beta_R = 17,5$ MN/m²

 $\sigma_b \text{ admisible} = \frac{\beta_R}{\gamma} = \frac{17,5}{2.1} = 8,3$ MN/m²

- Barras de acero para hormigón nervuradas ADM-420-N

 $\sigma_s \text{ adm} = \frac{\beta_S}{\gamma} = \frac{420}{1.75} = 240$ MN/m² = 24 kN/cm²

β_R según CIRSOC 201, artículo 17.2.1., Tabla 17.

CIRSOC 201, artículo 23.2., siendo $\gamma_b = 2,1$ y $\gamma_s = 1,75$

CIRSOC 201, artículo 6.7., Tabla 10.

β_S según CIRSOC 201, artículo 17.2.1., figura 8.
- Recubrimiento de hormigón:

Utilizaremos para la armadura longitudinal $d_{sL} = 16$ mm y para los estribos $d_{s\text{ est}} = 12$ mm.

De acuerdo con la figura 1:

\[c_L > d_s + 5 \text{ mm o sea } 16 \text{ mm} + 5 \text{ mm} = 21 \text{ mm} \]

\[c_{\text{est}} > d_s + 5 \text{ mm o sea } 12 \text{ mm} + 5 \text{ mm} = 17 \text{ mm} \]

Y de acuerdo con la Tabla 15:

Condición ambiental (a la intemperie)

Hormigón H-II (general) \hspace{1cm} c = 20 \text{ mm}

Adoptamos \hspace{1cm} c = 20 \text{ mm}

CASO A: MENSULA CORTA CON CARGA SUPERIOR DIRECTA

La carga es no predominantemente estática

1. Dimensiones de los elementos

Altura Útil:

\[h = d - d_2 = 65 \text{ cm} - 9 \text{ cm} = 56 \text{ cm} \]

CIRSOC 201, artículo 13.2. figura 1.

CIRSO 201, artículo 13.2., Tabla 15.

CIRSOC 201, artículo 2.1.6.

CIRSO 201, artículo 17.1.2. (con $k_k = a$)
Condición para ménsulas:

\[\frac{g_k}{h} = \frac{a}{h} = \frac{35}{56} = 0,63 < 1,0 \]

Ancho de la ménsula:

\[b = 45 \text{ cm} \]

En el Cuaderno 220, artículo 2.6., página 143, se indica como condición:

\[a/z < 1 \]

El brazo de palanca de los esfuerzos internos puede considerarse aproximadamente igual a 0,85\(h\):

\[z = 0,85 \times h = 0,85 \times 56 \text{ cm} = 47 \text{ cm} \]

Entonces \(a/z = 35 \text{ cm} / 47 \text{ cm} = 0,74 < 1\)

2. Cargas

Cargas principales:

- Carga permanente \(F_g = 40 \text{ kN}\)
- Sobrecarga \(F_p = 300 \text{ kN}\)

\(F_q = 340 \text{ kN}\)

\(F_p\) puede ser, por ejemplo, la carga debida a un puente grúa y se considera igual al 90% \(F_q\).
Carga secundaria:
- Carga horizontal \(H = \pm \frac{F_p}{10} = \pm 30 \text{ kN} \)

3. Solicitaciones y dimensionamiento bajo las cargas de servicio

Esfuerzo total de tracción \(Z \) (arriba):
- Esfuerzo \(Z \) debido a \(F_q \) : \(Z_F = F_q \frac{a}{0.85 \ h} = 340 \ \frac{35}{0.85 \cdot 0.56} = 250 \text{ kN} \)
 En la descomposición de fuerzas que se observa en la figura no se ha considerado la leve inclinación de \(Z \) respecto de la horizontal.

- Esfuerzo \(Z \) debido a \(H \) : \(Z_H = H \frac{z + \Delta h}{z} = H \left(1 + \frac{\Delta h}{z} \right) = 30 \left(1 + \frac{12}{4.7} \right) = 38 \text{ kN} \)

\[
Z = Z_F + Z_H = 250 \text{ kN} + 38 \text{ kN} = 288 \text{ kN}
\]

\[
Z = 288 \text{ kN}
\]

La armadura de tracción requerida para \(Z \) (arriba) será:
\[
As_{s} = \frac{Z}{\sigma_{s} \ \text{adm}} = \frac{288 \text{ kN}}{24 \text{ kN/cm}^2} = 12 \ldots \text{ cm}^2
\]

La armadura de tracción requerida para \(\Delta Z \), considerando la limitación de la tensión en el acero bajo carga no predominantemente estática será:
$\Delta Z = Z_{fp} = 0,90 \cdot Z_F = 0,90 \cdot 250 = 225 \text{ kN}$

$\Delta Z = 225 \text{ kN}$

La verificación de la tensión admisible para el acero ADM-420-N será:

$\Delta \sigma_s \text{ adm} = 140 \text{ MN/m}^2 = 14 \text{ kN/m}^2$

$A_s (Z) = \frac{\Delta Z}{\Delta \sigma_s \text{ adm}} = \frac{225 \text{ kN}}{14} = 16,0 \text{ cm}^2$

<table>
<thead>
<tr>
<th>Posición</th>
<th>Barras de acero para hormigón armado ADM-420-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,4,</td>
<td>Bucles: $\begin{align*} 2 & \phi 12 \text{ de 2 ramas} \ 2 & \phi 16 \text{ de 2 ramas} \end{align*}$</td>
</tr>
<tr>
<td>5</td>
<td>Estribos horizontales: $1 \phi 12 \text{ de 2 ramas}$</td>
</tr>
<tr>
<td>1</td>
<td>Estribos verticales: $2 \phi 12 \text{ de 1 rama}$</td>
</tr>
</tbody>
</table>

$A_s \text{ exist} = 4,52 \text{ cm}^2 + 8,04 \text{ cm}^2 + 2,3 \text{ cm}^2 + 2,3 \text{ cm}^2 = 17,2 \text{ cm}^2$

Esta variación de la tensión en el acero ADM-420-N igual a 140 MN/m² se considera en la zona de doblado.

CIRSOC 201, artículo 17.8. dice: en partes rectas o de pequeña curvatura ($d_{br} \geq 25 d_s$) la amplitud de oscilación de la tensión bajo carga de servicio no debe sobrepasar el siguiente valor:

$\Delta \sigma_s \text{ adm} = 140 \text{ MN/m}^2$

La armadura prevista es envolvente en la zona de aplicación de la carga.

Se designa "bucle" aún cuando en lugar de un extremo en semicírculo:

se adopta la siguiente configuración:
Para absorber los esfuerzos de tracción por hendimiento debidos a las trayectorias de las tensiones de compresión, (en el alma), colocamos estribos horizontales adicionales:

\[Z_{est} = \frac{Z_F}{3} = \frac{250}{3} = 83 \]

\[A_{snec} = \frac{Z_{est}}{\sigma_{s \text{ adm}}} = \frac{83}{24} = 3,5 \text{ cm}^2 \]

Adoptamos: Barras de acero para hormigón armado ADM-420-N

Estríbios horizontales: 3 φ 10, de dos ramas (posición 5a)

\[A_{sexist} = 4,7 \text{ cm}^2 \]

4. Seguridad a rotura por compresión en el alma

La verificación de la tensión principal de compresión se realiza en forma simplificada con la siguiente expresión:

valor básico \(\tau_0 \leq \) valor de compresión \(\tau_v \)

De la Tabla 18 (artículo 17.5.2.) obtenemos para H-21:

\(\tau_{02} = 1,80 \text{ MN/m}^2 \)

\(\tau_{03} = 3,00 \text{ MN/m} \)

\[\tau_0 = \frac{Q}{b \cdot z} = \frac{F_0}{b \cdot 0,85 \cdot h} = \frac{0,340}{0,45 \cdot 0,85 \cdot 0,56} = 1,59 \text{ MN/m}^2 < \tau_{02} \]
Tensión de corte de comparación:

\[\tau_V = \tau_{03} - \frac{1}{2} (\tau_{03} - \tau_{02}) \frac{a}{h} \]

\[= 3,00 \text{ MN/m}^2 - \frac{1}{2} (3,00 - 1,80) 0,63 = 2,62 \text{ MN/m}^2 > \tau_0 \]

\(\tau_V \) es el límite superior reducido de la tensión de corte \(\tau_{03} \)

\(\tau_{03} \) rige también como parámetro para el límite de las tensiones principales de compresión admisibles.

\(\tau_V \) del Cuaderno 220, página 144, ecuación (2.30).

5. Verificación de las tensiones de corte

Esta verificación no se efectúa debido a que en CIRSOC 201, artículo 23.2., último párrafo dice: "Las limitaciones de las tensiones de corte de acuerdo con el artículo 17.5.3. no rigen aquí".

La verificación de la tensión principal de compresión se efectúa en el punto 4. de este ejemplo.

6. Zona de aplicación de la carga

El anclaje de la armadura se efectúa, por completo, detrás de la lín- La transmisión de la carga está garantizada debido nea de acción de la carga \(F_q \) (ver el punto 7.4. de este ejemplo), pa a que la placa de introducción de la carga se halla garantizar una correcta transmisión de la carga y su absorción me ubicada por detrás de los bucles (ver los detalles diante las bielas de compresión y de tracción.

La tensión de compresión \(\sigma_1 \), bajo la placa de introducción de la cargar, se calcula en función de la superficie de aplicación \(A_1 \) de la carga:

\[A_1 = b_1 \cdot d_1 = 25 \text{ cm} \cdot 15 \text{ cm} = 375 \text{ cm}^2 \]

\(b_1 \) : medida en la dirección de la ménsula
\[\sigma_1 \text{exist} = \frac{F_q}{A_1} = \frac{0,340 \text{ MN}}{0,037 \text{ m}^2} = 9,2 \text{ MN/m}^2 > \sigma_b \text{adm} = 8,3 \text{ MN/m}^2 \]

El área de influencia de la tensión de compresión admisible para la carga localizada se calcula partiendo del valor de la superficie de repartición \(A_2 \) prevista según cálculo.

\[A_2 = b_2 \cdot d_2 = b_1 \left(d_1 + 2 \cdot 5,0 \text{ cm} \right) = 25 \cdot 25 = 625 \text{ cm}^2 \]

\[h > d_2 - d_1 = 22 - 15 = 7 \text{ cm} > b_2 - b_1 = 0 \]

\[\sigma_1 \text{adm} = \frac{\beta_R}{2,1} \cdot \sqrt{\frac{A_2}{A_1}} = \frac{17,5}{2,1} \cdot \sqrt{\frac{625}{375}} = 10,80 \text{ MN/m}^2 \]

\[\sigma_1 \text{adm} = 10,80 \text{ MN/m}^2 < 1,4 \beta_R = 1,4 \cdot 17,5 \text{ MN/m}^2 = 24,5 \text{ MN/m}^2 > \sigma_1 \text{exist} = 9,2 \text{ MN/m}^2 \]

Hipótesis de simplificación:
- La altura \(h \) del trapezoide de distribución de la carga \(h = 10 \text{ cm} \).
- La carga se expande sólo en la dirección longitudinal.
- La expansión es menor a 1:2, hacia el extremo de la ménsula y hasta detrás del borde interno de los bucles.

En la dirección longitudinal los bucles absorben los esfuerzos de tracción por hendidura.

No se ha considerado la expansión de la carga en la dirección transversal, por lo que no se efectúa la verificación de la armadura destinada a absorber los esfuerzos de tracción por hendidura.

7. Colocación de la armadura

7.1. Consideraciones generales

Se adoptan las siguientes hipótesis:
1. Sobre la columna actúa una fuerza de compresión.

2. El momento originado por la ménsula, debido a F_q se distribuye en la columna aproximadamente en la mitad de su valor, hacia arriba y hacia abajo. Debido a esto, aproximadamente la mitad de la armadura de tracción (posición 1 a 3) se empalma con la armadura de la columna.

El anclaje del resto de la armadura de tracción dentro de la columna se efectúa horizontalmente con l_1.

Medidas a considerar para los anclajes y los empalmes:

<table>
<thead>
<tr>
<th>Posición</th>
<th>ϕ</th>
<th>Forma</th>
<th>Zona de adherencia</th>
<th>Medida</th>
<th>Posición y forma de los extremos de las barras</th>
<th>Zona de adherencia</th>
<th>Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 3</td>
<td>16</td>
<td>Bucles</td>
<td>II</td>
<td>l_{sk}</td>
<td>vertical, recto</td>
<td></td>
<td>l_e</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Bucles</td>
<td></td>
<td></td>
<td>horizontal, gancho en ángulo</td>
<td>I</td>
<td>l_1</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>horizontal, gancho en ángulo</td>
<td></td>
<td>l_1</td>
</tr>
<tr>
<td>5 a</td>
<td>10</td>
<td>Estribos</td>
<td>I</td>
<td></td>
<td>horizontal, gancho en ángulo recto</td>
<td>I</td>
<td>l_1</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>inclinado, recto vertical, recto</td>
<td></td>
<td>l_1, l_e</td>
</tr>
</tbody>
</table>

Siendo: l_{sk} la longitud de anclaje de los bucles en la ménsula (punto 7.4. de este ejemplo)
7.2. Longitud básica de anclaje

\[
\lambda_0 = \frac{\beta_s}{7.1 _tadm} \cdot d_s
\]

| Para la zona de adherencia I | \[
\lambda_0 = \frac{420 \text{ MN/m}^2}{7.1,8 \text{ MN/m}^2} d_s = 33 d_s
\] |
|-----------------------------|--|
| Para la zona de adherencia II | \[
\lambda_0 = \frac{420 \text{ MN/m}^2}{7.0,9 \text{ MN/m}^2} d_s = 67 d_s
\] |

7.3. Diámetros determinantes de los mandriles de doblado

<table>
<thead>
<tr>
<th>(d_{br})</th>
<th>Diámetro del mandril de doblado para:</th>
<th>A la izquierda de (F_q)</th>
<th>En la columna</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (d_s)</td>
<td>Anclaje mediante ganchos</td>
<td>-</td>
<td>Posición 4, 5, 5a</td>
</tr>
<tr>
<td>10 (d_s)</td>
<td>Doblado para (c_k \geq 10 \text{ cm}, s \geq 7 d_s)</td>
<td>Posición 1</td>
<td>Posición 1</td>
</tr>
<tr>
<td>15 (d_s)</td>
<td>Doblado en general para (c_k \geq 5 \text{ cm}, d_s \geq 3)</td>
<td>Posición 2, 3, 4</td>
<td>Posición 2</td>
</tr>
<tr>
<td>22,5 (d_s)</td>
<td>Idem para la posición interna</td>
<td>-</td>
<td>Posición 3</td>
</tr>
</tbody>
</table>

CIRSOC 201, artículo 18.5.2.1., ecuación (29).

\(t_{adm}\) se obtiene de CIRSOC 201, Tabla 24, artículo 18.4.

CIRSOC 201, artículo 18.3.1., Tabla 23.

renglón 2 de la Tabla 23.
renglón 5, nota (2) al pie de la Tabla 23.
renglón 5, Tabla 23.
renglón 5, nota (1) a pie de la Tabla 23.
7.4. Longitudes de anclaje a la izquierda de F_q:

Buces superiores (Posición 2 a 5), zona de adherencia II.

Longitud de anclaje l_2 a partir del borde derecho de la placa de introducción de la carga:

$$ l_2 = \frac{2}{3} \quad l_1 = \frac{2}{3} \quad \alpha_1 \cdot \alpha_A \cdot l_0 = \frac{2}{3} \quad \alpha_1 \cdot \alpha_A \cdot \frac{\beta_s}{7 \cdot \tau_1 \text{ adm}} \quad d_s \geq 6 \quad d_s $$

Para el menor diámetro de barra, $d_s = 12$ mm (posición 5), y zona de adherencia II:

$$ \alpha_1 = 0,7 \quad \text{(bucle)} $$

$$ \alpha_A = 12 \text{ cm}^2/17,2 \text{ cm}^2 = 0,70 $$

$$ l_2 = \frac{2}{3} \quad 0,7 \cdot 0,7 \cdot \frac{420}{7 \cdot 0,9} \quad 1,2 = \frac{26 \text{ cm}}{} \quad l_2 \text{ exist } = 26,5 \text{ cm} $$

$$ l_2 \text{ exist } = e + d_1/2 - c = 21 + 15/2 - 2 = 26,5 \text{ cm} $$

7.5. Longitudes de anclaje a la derecha, en la columna:

$$ l_1 = \alpha_1 \cdot \alpha_A \cdot l_0 = \alpha_1 \cdot \alpha_A \cdot \frac{\beta_s}{7 \cdot \tau_1 \text{ adm}} \quad d_s \left\{ \begin{array}{l} \geq 10 \quad d_s \text{ (extremos rectos)} \quad \text{CIRSOC 201, artículo 18.5.2.2., ecuación (30)} \\ \geq d_{br}/2 + d_s \text{ (para ganchos)} \end{array} \right\} $$

CIRSOC 201, artículo 18.7.4.

Con respecto a la armadura de tracción, se considera que la carga de la ménsula F_q actúa como si se tratara de una reacción en el apoyo extremo de una viga.

CIRSOC 201, artículo 18.5.2.2., ecuación (30) y artículo 18.7.4., ecuación (35).

α_1 se obtiene de CIRSOC 201, artículo 18.5.2.2., Tabla 25.

$A_{s\text{nec}} = A_{s\text{nec}(2)}$
Llamamos \(\ell_{br} \) a \(d_{br}/2 + d_s = 4 d_s/2 + d_s = 3 d_s \) y para todas las barras se adopta la zona de adherencia I.

La longitud de anclaje se mide siempre a partir del borde anterior de la columna.

<table>
<thead>
<tr>
<th>Posición</th>
<th>(\phi)</th>
<th>(\ell_{nec})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>1,0, 0,70 $\frac{420}{7,1,8} \cdot 1,2 = 28 \text{ cm}) > 10 (d_s = 12 \text{ cm})</td>
</tr>
</tbody>
</table>

Bucles y estribos horizontales, con ganchos:

<table>
<thead>
<tr>
<th>Posición</th>
<th>(\phi)</th>
<th>(\ell_{nec})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>12</td>
<td>0,7, 0,70, 34, 1,2 = 20 cm > 3 (d_s = 3,6 \text{ cm})</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>0,7, 0,70, 34, 1,2 = 20 cm > 3 (d_s = 3,6 \text{ cm})</td>
</tr>
<tr>
<td>5a</td>
<td>10</td>
<td>0,7, 1,0, 34, 1,0 = 24 cm > 3 (d_s = 3 \text{ cm})</td>
</tr>
</tbody>
</table>

Longitudes de las ramas de los estribos:

\[
\ell = \ell_{br} + a = 3 \cdot d_s + 5 \cdot d_s = 8 \cdot d_s
\]

\[
\begin{align*}
8 \text{ cm (\(\phi \) 10)} \\
10 \text{ cm (\(\phi \) 12)} \\
13 \text{ cm (\(\phi \) 16)}
\end{align*}
\]

Debido a que se considera la desviación de las componentes de compresión y de tracción así como la inversión de las zonas de tracción y compresión en la zona del nudo, las longitudes de anclaje reales horizontales se adoptan de un largo mayor del necesario.

CIRSOC 201, artículo 18.5.2.2, Tabla 25.
7.6. **Longitudes de empalme, a la derecha, en la columna**

\[l_e = \alpha_e \cdot l_1 = \alpha_e \cdot \alpha_1 \cdot \alpha_A \cdot \frac{\beta_s}{\gamma_i \text{adm}} \cdot d_s \]

- \(\geq 20 \text{ cm} \)
- \(\geq 15 \text{ } d_s \) (extremos recuos)

CIRSOC 201, artículo 18.6.3.2., ecuación (32).

\(\alpha_e \) de la Tabla 26, página 225
\(\alpha_1 \) de la Tabla 25, página 220
\(\alpha_A \) de acuerdo con el punto 7.4. de este ejemplo.

Ramas verticales, rectas, empalmadas en un 100%, en zona de adherencia I:

Posición 1: \(\phi \ 12 \)

\[l_{\text{ene}} = 1,6 \cdot 1,0 \cdot 0,70 \cdot 33,4 \cdot 1,2 = \]

- \(\geq 20 \text{ cm} \)
- \(\geq 15 \text{ } d_s = 18 \text{ cm} \)

Posición 2 y 3: \(\phi \ 16 \)

\[l_{\text{ene}} = 2,2 \cdot 1,0 \cdot 0,70 \cdot 33,4 \cdot 1,6 = \]

- \(\geq 20 \text{ cm} \)
- \(\geq 15 \text{ } d_s = 24 \text{ cm} \)
CASO A: MENSULA CORTA SOLICITADA POR CARGA NO PREDOMINANTEMENTE ESTATICA

SUPERFICIE DE APARTE
- Sección de la carga
 A: 15 - 25 cm

ESTRIBOS
- Construcciones (montaje)

CORTE A - A
- 2 Ø 12

VISTA SUPERIOR C - C
- 4 Ø 12
- 2 Ø 12

d_{br}*: diámetro del envoltorio metálico
según SNI 01-201, Parte 23
Caso B: Mensula Corta con Introducción de la Carga en Forma Indirecta

Las cargas son predominantemente estáticas

1. Dimensiones de los elementos

Altura útil:

\[h = d - d_2 = 55 - (=) 10 = 45 \text{ cm} \]

Condición para mensulas:

\[\alpha = \frac{a}{h} = \frac{35}{45} = 0.78 < 1.0 \]

Podemos utilizar también la relación \(\frac{a}{z} \) (considerando a \(z = 0.9 \) \(h = 0.9 \cdot 45 \text{ cm} = 40 \text{ cm} \)), debido a que se adoptan varias capas de armaduras y pueden existir inexactitudes respecto de \(h \).

Ancho de la mensula: \(b = 45 \text{ cm} \)

2. Cargas

Se consideran solamente cargas principales, predominantemente estáticas.

La carga completa \(F_q = 280 \text{ kN} = 0.28 \text{ MN} \) (debida a una viga transversal).

Para calcular \(Z_s \) y \(Z_0 \), y sus componentes de compresión, se utilizan los siguientes modelos de bielas:

\[
Z_0 = F_0 \cdot \tan \beta
\]

siendo \(\tan \beta = \frac{a}{z} \)

\[
\beta = 41^\circ
\]

Si \(Z_1^2 = C_1^2 + F_1^2 \)

\[
C_0 = F_0 \sqrt{1 + \tan^2 \beta}
\]

Se supone que \(F_0 \) y \(F_1 \) son aproximadamente iguales al 50% de la carga completa \(F_q \) (más un 5%).

\[
F_0 = F_1 = 0.55 F_q
\]

Reemplazando obtenemos:
3. Solicitaciones y dimensionamiento

Esfuerzo de tracción horizontal Z_0:

\[Z_0 = 0,55 \cdot F_q \cdot \tan \beta = 0,55 \cdot 280 \text{ kN} \cdot 0,87 = 134 \text{ kN} \]

\[A_{s, nec} = \frac{Z_0}{\sigma_{adm}} = \frac{134}{24} = 5,6 \text{ cm}^2 \]

\[A_{s, nec} = 5,6 \text{ cm}^2 \]

Esfuerzo de tracción oblicuo

\[Z_s = 0,55 \cdot F_q \cdot \sqrt{1 + (0,87)^2} = \]
\[= 0,55 \cdot 280 \text{ kN} \cdot 1,32 = 204 \text{ kN} \]

\[A_{s, nec} = \frac{204 \text{ kN}}{24 \text{ kN/m}^2} = 8,5 \text{ cm}^2 \]

\[C_0 = F_0 \cdot \sqrt{1 + \tan^2 \beta} \]
\[C_1 = F_1 \cdot \tan \gamma \]

\[C_0 = 0,55 \cdot F_q \cdot \sqrt{1 + \tan^2 \beta} \]
\[C_1 = 0,55 \cdot F_q \cdot \tan \gamma \]

\[C_0 = 0,55 \cdot 280 \cdot \sqrt{1 + \tan^2 41^\circ} \]
\[C_1 = 0,55 \cdot 280 \text{ kN} \cdot \tan 41^\circ \]

\[C_0 = 204 \text{ kN} \]
\[C_1 = 134 \text{ kN} \]

La resultante C en el punto 1 se determina por adición vectorial de C_0 y C_1.

Sobre el eje x tenemos: C_1 y $C_0 \sin \beta$

Sobre el eje y tenemos $C_0 \cos \beta$

\[C^2 = (C_1 + C_0 \cdot \sin \beta)^2 + (C_0 \cdot \cos \beta)^2 \]
\[C = \sqrt{(C_1 + C_0 \cdot \sin \beta)^2 + (C_0 \cdot \cos \beta)^2} \]
\[C = \sqrt{(134 + 204 \cdot \sin 41^\circ)^2 + (204 \cdot \cos 41^\circ)^2} \]

\[C = 309 \text{ kN} \]

Nota: Entre los distintos métodos de cálculo que se utilizan para resolver este tema, no se observan importantes diferencias en cuanto a la obtención de la armadura de tracción, pero sí existen discrepancias en la evaluación de la resistencia en compresión. Un valor del ancho de la biela 0,2 h dará generalmente valores del lado de la seguridad, como se podrá comprobar en el caso A anterior.
4. **Verificación de la capacidad portante de la zona flexocomprimida**

\[
b_{\text{neq}} = \frac{2,1 \cdot C}{0,2 \cdot h \cdot \beta_{R}} = \frac{1,2 \cdot 309 \text{kN}}{0,2 \cdot 45 \text{cm} \cdot 1,75 \text{ kN/cm}^2} = 41 \text{ cm}
\]

\[b_{\text{neq}} = 41 \text{ cm} < b_{\text{exist}} = 45 \text{ cm}\]

5. **Colocación de la armadura**

5.1. **Consideraciones generales**

Se distinguen:

- **Bucles horizontales**: \(\phi 12 \) para absorber \(Z_0 \) (posición 7, 8 y 10)

- **Barras oblicuas**: \(\phi 16 \) para absorber \(Z_S \) (posición 6)

- **Estríbos horizontales** colocados con función constructiva \(\phi 10 \) en la zona inferior de la ménsula (posición 9).

- **Estríbos de montaje**, verticales, colocados con función constructiva.

Los bucles y estríbos portantes envuelven a la armadura proveniente de la viga transversal con un \(d_{BR} = 15 \text{ d}_S \).

Sólo se efectuará la verificación del anclaje de las barras en la columna, a la derecha.
Para todas las barras que conforman el anclaje rige zona de adherencia I.

<table>
<thead>
<tr>
<th>Posición 6, 9 y 10: anclaje con k_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posición 7 y 8: empalme con la armadura de la columna con k_e.</td>
</tr>
</tbody>
</table>

5.2. Longitudes básicas de anclaje

Se utilizará:

- Hormigón H-21
- Acero en barras para hormigón armado ADM-420-N

$$k_0 = \frac{\beta_s}{7 \cdot \tau_{adm}} \quad d_s = \frac{420 \text{ MN/m}^2}{7 \cdot 1,8 \text{ MN/m}^2} \quad d_s = 33 \ d_s$$

5.3. Diámetro determinante del mandril de doblado

<table>
<thead>
<tr>
<th>d_{br}</th>
<th>Diámetro del mandril de doblado para:</th>
<th>en la ménsula</th>
<th>en la columna</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4 \ d_s$</td>
<td>estribos y ganchos</td>
<td>posición 9</td>
<td>posición 9 y 10</td>
</tr>
<tr>
<td>$15 \ d_s$</td>
<td>curvaturas para $c_f > 5 \text{ cm}$</td>
<td>posición 6, 7</td>
<td>posición 6 y 7</td>
</tr>
<tr>
<td>$22,5 \ d_s$</td>
<td>igual que el punto anterior pero para la posición interior</td>
<td>-</td>
<td>posición 8</td>
</tr>
</tbody>
</table>

CIRSOC 201, Tabla 23, renglón 2, columna 3

Renglón 5, columna 3.

Renglón 5, nota a pie de la Tabla 23, (2)
5.4. Longitudes de anclaje, a la derecha, en la columna

\[\ell_1 = \alpha_1 \cdot \alpha_a \cdot \ell_0 = \alpha_1 \cdot \alpha_a \cdot \frac{P_0}{7\tau_{adm}} \cdot d_s \begin{cases} \geq 10 \text{ } d_s \text{ (extremos rectos)} \\ \geq \ell_{br} = 3 \text{ } d_s \text{ (ganchos)} \end{cases} \]

Como en el caso A, punto 7.5.

El anclaje se considera siempre a partir del borde anterior de la columna:

-Las barras oblicuas tienen extremos rectos:

Posición 6: \[\ell_{1 \text{ nec}} = 1,0 \cdot 0,85 \cdot 34 \cdot 1,6 = 47 \text{ cm} > 10 \text{ } d_s \]

\[\ell_0 = \frac{420 \text{ MN/m}^2}{71,8 \text{ MN/m}^2} = 34 \]

\[\alpha_a (Z_s) = 8,5/10 = 0,85 \]

- Bucles y estribos horizontales, con ganchos:

| Posición 10 | \(\phi \) 12 | \(\ell_{1 \text{ nec}} = 0,7 \cdot 0,82 \cdot 34 \cdot 1,2 = 23,4 \text{ cm} > 3 \text{ } d_s \) | \(\alpha_a (Z_s) = \frac{5,6 \text{ cm}^2}{6,8 \text{ cm}^2} = 0,82 \) |
| Posición 9 | \(\phi \) 10 | \(\ell_{1 \text{ nec}} = 0,7 \cdot 0,82 \cdot 34 \cdot 1,0 = 19,5 \text{ cm} > 3 \text{ } d_s \) |

Las longitudes de las ramas de los ganchos \(\ell_h \) se calculan como en el caso A, punto 7.5.
5.5. Longitudes de empalme, a la derecha, en la columna:

\[l_e = \alpha_e \cdot l_1 = \alpha_e \cdot \alpha_1 \cdot \alpha_A \cdot \frac{\beta_S}{7 \cdot \tau_{adm}} \cdot d_s \left\{ \begin{array}{lr} \geq 20 \text{ cm} \\ \geq 15 \text{ } d_s \text{ (extremos rectos)} \end{array} \right. \]

Como en el caso A, punto 7.6.

Con respecto a los bucles, las ramas verticales con extremos rectos son empalmadas con la longitud \(l_e \):

<table>
<thead>
<tr>
<th>Posición 7 + 8</th>
<th>(\phi) 12</th>
<th>(l_e \text{ nec} = 1,6 \cdot 1,0 \cdot 0,82 \cdot 34 \cdot 1,2 = 54 \text{ cm})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(> 20 \text{ cm})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(> 15 \text{ } d_s)</td>
</tr>
</tbody>
</table>

\(\alpha_e = 1,6 \) (para zona de adherencia I, \(d_s = 12 \text{ mm} \) y porcentaje de barras empalmadas = 100%)

\(\alpha_1 = 1 \)

\(\alpha_A (Z_0) = \frac{5,6 \text{ cm}^2}{6,8 \text{ cm}^2} = 0,82 \)
CASO B: MENSULA CORTA SOLICITADA POR CARGA PREDOMINANTEMENTE ESTATICA APLICADA EN FORMA INDIRECTA

CORTE B-B

7 1 Ø 12 l = 85 d_{br} = 15 d_s (derecha)
8 1 Ø 12 l = 81 d_{br} = 22,5 d_s (derecha)

CORTE D-D

6 Ø 16
7 Ø 12
8 Ø 12
9 Ø 10

Armadura de suspensión

estribos constructivos
EJEMPLO N°8

ESQUINA DE PÓRTICO

El dimensionamiento y la correspondiente colocación de la armadura en las esquinas de los pórticos se ejemplifica a través de dos casos.

CASO A: Esquina de pórtico, solicitada por un momento positivo, correspondiente a una viga de cubierta en ángulo.

CASO B: Esquina de pórtico solicitada por un momento negativo, correspondiente a un pórtico de dos pies y un solo piso.

CASO A

Se obtendrá y representará la armadura necesaria para la zona de cumbrerera de una viga de cubierta en ángulo. El elemento se encuentra a la intemperie y la carga es predominantemente estática.

Materiales:

- Hormigón H-21
 \[\beta_R = 17,5 \text{ MN/m}^2 \] CIRSOC 201, artículo 17.2.1., Tabla 17.
- Barras de acero para hormigón armado, nervuradas
 \[\text{ADM-420-N(III)} \] CIRSOC 201, artículo 6.7., Tabla 10.
1. Esquema y Cargas

![Diagrama de carga](image)

\[q = 20 \text{ kN/m} \]

\[\alpha = 60^\circ \]

\[L = 10.00 \text{ m} \]

2. Sección y recubrimiento de hormigón

\[\frac{b_0}{d_0} = 40 \text{ cm} / 65 \text{ cm} \]

\[c = 2.0 \text{ cm} \]

Este valor se obtiene de la Tabla 15, y es coincidente con \(c_{est} \) (de la figura 1) y aproximadamente igual a \(c_L \).

3. Solicitaciones

\[M_{\text{max}} = q \cdot \frac{L^2}{8} = 20 \text{ kN/m} \cdot (10 \text{ m})^2 / 8 = 250 \text{ kNm} \]

\[A = q \cdot \frac{L}{2} = 20 \text{ kN/m} \cdot 10 \text{ m} / 2 = 100 \text{ kN} \]

CIRSOC 201, artículo 18.9.3., 2° párrafo.

\[\alpha = 60^\circ > 45^\circ \], por lo tanto el acodamiento es muy pronunciado. Las condiciones exigidas para estos casos:

- Hormigón \(\geq \) H-21 y
- Acero Nervurado

han sido cumplidas. Si se empleara hormigón de resistencia menor, las solicitudes se deben multiplicar por 1,5.

CIRSOC 201, artículo 13.2., figura 1 y Tabla 15, renglón 2, columna 4.

Con respecto a la altura útil, ver el punto 4.1. de este ejemplo.

CIRSOC 201, págs. 165 y 166, figura 1 y Tabla 15.

CIRSOC 201, artículo 17.5.2., figura 11.
El esfuerzo de corte determinante a una distancia \(\frac{h}{2} \) desde el borde del apoyo es:

\[
Q_s_{\text{máx}} = \left(A - q \frac{a_g + h}{2}\right) \cos \frac{\alpha}{2} = (100 - 20 \cdot \frac{0 + 0.6}{2}) \cdot \cos 30° = 82 \text{ kN}
\]

4. Dimensionamiento

H-21 : \(\sigma'_b k = 21 \text{ MN/m}^2 \)

\(\beta_R = 17.5 \text{ MN/m}^2 \)

Acero ADM-420-N : \(\beta_s = 420 \text{ MN/m}^2 = 42 \text{ kN/cm}^2 \)

\(\sigma_s \text{ adm} = 240 \text{ MN/m}^2 = 24 \text{ kN/cm}^2 \)

4.1. Dimensionamiento a flexión

\(h = d_0 - d_2 = 65 \text{ cm} - 5 \text{ cm} = 60 \text{ cm} \)

\[
k_h = \frac{h}{\sqrt{M_{\text{máx}}/b_0}} = \frac{60 \text{ cm}}{\sqrt{250/0.4}} = 2.4 > k_h^* = 1.72
\]

De la Tabla 1.7.a obtenemos para \(k_h = 2.34 \):

\(k_S = 4.7 \)

\(k_X = 0.30 \)

\(k_Z = 0.89 \)

\[
A_{s \text{ nec}} = \frac{M_{\text{máx}}}{h} \cdot k_S = \frac{250}{60} \cdot 4.7 = 19.6 \text{ cm}^2
\]

Cuadro 220, Tabla 1.7.a, página 39.

<table>
<thead>
<tr>
<th>BS5</th>
<th>BS9</th>
<th>BS15</th>
<th>BS20</th>
<th>BS25</th>
<th>BS30</th>
<th>BS35</th>
<th>BS40</th>
<th>BS45</th>
<th>BS50</th>
<th>BS55</th>
<th>BS60</th>
<th>BS65</th>
<th>BS70</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1)</td>
<td>(d_2)</td>
<td>(s)</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>22</td>
<td>28</td>
<td>34</td>
<td>40</td>
<td>46</td>
<td>52</td>
<td>58</td>
<td>64</td>
<td>70</td>
<td>76</td>
<td>82</td>
<td>88</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>66</td>
<td>72</td>
<td>78</td>
<td>84</td>
<td>90</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
<td>27</td>
<td>33</td>
<td>39</td>
<td>45</td>
<td>51</td>
<td>57</td>
<td>63</td>
<td>69</td>
<td>75</td>
<td>81</td>
<td>87</td>
<td>93</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>66</td>
<td>72</td>
<td>78</td>
<td>84</td>
<td>90</td>
<td>96</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>66</td>
<td>72</td>
<td>78</td>
<td>84</td>
<td>90</td>
<td>96</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>66</td>
<td>72</td>
<td>78</td>
<td>84</td>
<td>90</td>
<td>96</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>66</td>
<td>72</td>
<td>78</td>
<td>84</td>
<td>90</td>
<td>96</td>
</tr>
<tr>
<td>26</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>66</td>
<td>72</td>
<td>78</td>
<td>84</td>
<td>90</td>
<td>96</td>
</tr>
<tr>
<td>28</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>66</td>
<td>72</td>
<td>78</td>
<td>84</td>
<td>90</td>
<td>96</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k_{s})</th>
<th>(k_{x})</th>
<th>(k_{z})</th>
<th>(c_{s})</th>
<th>(c_{x})</th>
<th>(c_{z})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.66</td>
<td>0.70</td>
<td>0.74</td>
<td>0.78</td>
<td>0.82</td>
<td>0.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
</tr>
</tbody>
</table>

Tabla 1.7a

Tabla para el dimensionamiento con coeficientes dimensionales para secciones rectangulares sin armadura de compresión, para flexión con esfuerzo longitudinal (BS 420/500).
Se adopta:

- ADM-420-N 4 φ 25 \(A_s \) exist = 19,6 cm\(^2\)
 2 φ 12 como barras de montaje

Armadura oblicua en la esquina:

\[
\frac{\mu_{\text{nec}}}{A_{\text{nec}}} = \frac{A_s \text{ nec}}{b_0 \cdot d_0} = \frac{19,6 \text{ cm}^2}{40 \text{ cm} \cdot 65 \text{ cm}} = \frac{0,75\%}{< 1,0\%}
\]

Armadura oblicua necesaria:

\[
A_{ss \text{ nec}} = 0,5 \cdot A_s \text{ nec} = 0,5 \cdot 19,6 = 9,8 \text{ cm}^2
\]

Se adopta:

ADM-420-N 2 φ 25 \(A_{ss \text{ exist}} = 9,82 \)

4.2. Limitación del ancho de fisuración

Un 70% de la carga total \(q \) se considera como carga permanente.

De acuerdo con lo indicado para los elementos constructivos expuestos a la intemperie en CIRSOC 201, artículo 17.6.1., 3º párrafo, región 2, se controla la fisuración.

La verificación se realiza con el diámetro de comparación, de acuerdo con la Tabla de dimensionamiento 1.7.a (Cuaderno 220, pág. 39).

CIRSOC 201, artículo 18.9.3.a), 1º párrafo y figura 26.

CIRSOC 201, artículo 18.9.3.a), 1º párrafo

CIRSOC 201, artículo 17.6.2.

Ver reproducción de la Tabla 1.7.a en la página anterior.
Interpolando obtenemos:

\[k_h \text{ de cálculo } = 2,4 \]

<table>
<thead>
<tr>
<th>(H - 21)</th>
<th>(d_s \text{ (mm)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,64</td>
<td>25</td>
</tr>
<tr>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>2,34</td>
<td>35</td>
</tr>
</tbody>
</table>

\[d_s \text{ máx } = 35 - \frac{2,4 - 2,34}{2,64 - 2,34} (35 - 25) = 35 - 2 = 33 \text{ mm} > d_s \text{ exist} \]

Este cálculo es demostrativo; en realidad no es necesario hacerlo.

4.3. Dimensionamiento a corte

Límites de las tensiones de corte para H-21:

\[\tau_{012} = 0,75 \text{ MN/m}^2 \]
\[\tau_{02} = 1,80 \text{ MN/m}^2 \]
\[\tau_{03} = 2,00 \text{ MN/m}^2 \]

\[\tau_0 \text{ máx } = \frac{Q_s \text{ máx }}{b_0 \cdot k_z \cdot h} = \frac{0,082}{0,4 \cdot 0,89 \cdot 0,60} = 0,38 \]

\[\tau_0 \text{ máx } = 0,38 \text{ MN/m}^2 < \tau_{012} = 0,75 \text{ MN/m}^2 \]

Zona de corte 1, armadura mínima de corte necesaria:
- en general: \(\tau_{\text{ nec }} = 0,40 \cdot \tau_0 \text{ máx } = 0,40 \cdot 0,38 = 0,15 \text{ MN/m}^2 \)
- estribos: \(\tau_{\text{ est nec }} = 0,25 \cdot \tau_0 \text{ máx } = 0,25 \cdot 0,38 = 0,095 \text{ MN/m}^2 \)

CIRSOC 201, artículo 17.5.3., Tabla 18.
Cuaderno 220, pág. 127, artículo 2.2.2., ec(2.1.)
CIRSOC 201, artículo 17.5.5., ec.(24)
CIRSOC 201, artículo 18.8.2.2., ec.(37)
Se utilizarán solamente estribos como armadura de corte:

\[a_{sest\ nec} = \frac{\tau_{nec} \cdot b_0}{c_{s\ adm}} = \frac{0,15 \cdot 0,4}{0,024} = 2,5 \text{ cm}^2/\text{m} \]

Se adopta:

Acero ADM-420 : estribos φ 8 (2 ramas)

\[s_{est} = 30 \text{ cm} = s_{est\ max} < 0,8 \cdot d_0 = 52 \text{ cm} \]

\[a_{sest\ exist} = 3,4 \text{ cm}^2/\text{m} \]

5. Colocación de la armadura

d_1 = d_2 = d_0 = 65 \text{ cm} < 100 \text{ cm}

Se adopta armadura tipo bucle según CIRSOC 201, artículo 18.9.3.a), figura 26.

Longitud básica de anclaje para H-21 y ADM-420-N:

\[l_0 = \frac{\beta_S}{7 \cdot \tau_{1\ adm}} \cdot d_S = \frac{420 \text{ MN/m}^2}{7 \cdot \tau_{1\ adm}} \cdot d_S = \]

<table>
<thead>
<tr>
<th>Zona de adherencia</th>
<th>(\tau_{1\ adm})</th>
<th>(d_S)</th>
<th>(l_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1,8 MN/m²</td>
<td>25 mm</td>
<td>0,84 m</td>
</tr>
<tr>
<td>II</td>
<td>0,9 MN/m²</td>
<td>25 mm</td>
<td>1,67 m</td>
</tr>
</tbody>
</table>

Cuaderno 220, pág. 135, ec.(2.15)

\[c_{s\ adm} = 240 \text{ MN/m}^2 = 0,024 \text{ MN/cm}^2 \]

CIRSOC 201, artículo 18.8.2.1, Tabla 31, regón 2.

CIRSOC 201, artículo 18.9.3.a), figura 26.

CIRSOC 201, artículo 18.5.2.1., ec.(29)

\(\tau_{1\ adm} \) según CIRSOC 201, artículo 18.4., Tabla 24

La longitud de anclaje sólo es necesaria para la armadura oblicua \(A_{ss} \), dado que para el anclaje de la armadura de flexotrazción se procede de acuerdo con las indicaciones de la figura 26.
- Anclaje de la armadura de flexotránsicion:

 Longitud de anclaje en el extremo del bucle:

 \[d_{1/2} = d_{2/2} = d_0/2 = 65/2 = 32,5 \text{ cm} \]

 Se adopta: 35 cm

- Diámetro del mandril de doblado de los bucles:

 \[d_{br\text{nec}} = 20 \, d_s = 20 \cdot 2,5 = 50 \text{ cm} \]

 \[d_{br\text{exist}} = d - 2 \cdot c - 2 \, d_s \text{ est} - 2 \, d_s = 65 \text{ cm} - 2 \, 2 \text{ cm} - 2 \cdot 0,8 \text{ cm} - 2 \cdot 2,5 \text{ cm} = \]

 \[= \frac{54 \text{ cm}}{} > d_{br\text{nec}} \]

- Anclaje de la armadura oblicua \(A_{SS} \):

 Anclamos con \(\xi_0 \) a partir del cruce A, parcialmente en zona de adherencia I, parcialmente en zona de adherencia II.

 Debido a esto se adopta un valor promedio:

 \[\xi_0 \approx 1,40 \text{ cm} \]
CASO B
ESQUINA DE PORTICO CON MOMENTO NEGATIVO, correspondiente a un
pórtico de un solo piso y dos pies.

Explicación:

En el ejemplo se calcula y representa la armadura necesaria para el
pórtico descripto en el título.
El elemento se halla a la intemperie y la carga es predominantemente
estática.

Materiales:

- Hormigón H-21
- Barras de acero nervuradas para hormigón armado ADM-420-N

1. Esquema y cargas

a = b = \ell/2 = 5,0 m

k = s/\ell = 6,0/10,0 = 0,6

F_1 = 200 kN

F_2 = 400 kN

CIRSOC 201, artículo 18.9.3., 2° párrafo:
\alpha = 90° > 45° o sea que el acodamiento es pronunciado. Se deben cumplir los requisitos para este
caso:
- Hormigón \geq H-21
- Barras de acero nervuradas

Si la resistencia del hormigón fuera menor, las
solicitudes se deben multiplicar por 1,5.
En los valores de las cargas está incluido el peso propio.

2. Secciones, recubrimiento de hormigón

Pies del pórtico:

\[b_0 = 40 \text{ cm} \]
\[d_0 = 65 \text{ cm} \]
\[h = 60 \text{ cm} \]

Travesaño:

\[b_0 = 40 \text{ cm} \]
\[d_0 = 65 \text{ cm} \]
\[h = 60 \text{ cm} \]

Recubrimiento: \(c = 2,0 \text{ cm} \)

La altura útil es \(h = 60 \text{ cm} \), igual al valor del ejemplo A.

CIRSO 201, artículo 13.2., Tabla 15, renglón 2, columna 4 y figura 1.

3. Solicitaciones

\[H_A = H_B = \frac{3}{2} \frac{F_1 \cdot a \cdot b}{s \cdot \frac{k}{(k+2)}} = \frac{3}{2} \frac{200 \text{ kN} \cdot 5,0 \text{ m} \cdot 5,0 \text{ m}}{6,0 \text{ m} \cdot 10,0 \text{ m} \cdot (0,6+2)} = 48,1 \text{ kN} \]

\[V_A = V_B = F_1 \div 2 + F_2 = \frac{200 \text{ kN}}{2} + 400 \text{ kN} = 500 \text{ kN} \]

\[M_C = M_D = M_A - H_A \cdot s = + 96,15 \text{ kNm} - 48,1 \text{ kN} \cdot 6,0 \text{ m} = -193 \text{ kNm} \]

\[M_m = F_1 \cdot \frac{c}{4} + M_C = \frac{200 \text{ kN} \cdot 10,0 \text{ m}}{4} - 193 \text{ kNm} = 307 \text{ kNm} \]

\[M_A = \frac{F_1 \cdot a \cdot b}{2 \cdot \frac{k}{(k+2)}} \cdot \frac{\frac{k}{(k+2)} (5 \text{ k} - 1) + 2 \text{ a} (k+2)}{(6 \text{ k} + 1)} \]

\[M_A = \frac{200 \cdot (5,0 \text{ m})^2}{2 \cdot (10 \text{ m})^2} \cdot \frac{10 \text{ m} (5 \text{ m} \cdot 0,6 - 1) + 2 \cdot 5 \text{ m} (0,6 + 2)}{(0,6+2) \cdot (6,0+6,1)} = 96,15 \text{ kNm} \]
4. Momentos adicionales debidos a los desplazamientos de las barras

La influencia que ejercen los desplazamientos de las barras del pórtico se considera mediante el cálculo de momentos adicionales utilizando el método de la barra equivalente.

Determinación de la longitud de pandeo:

Utilizamos el Cuaderno 220, artículo 4.3.1.1., página 184:

Para caracterizar el empotramiento de los extremos de la columna, se introduce la magnitud relativa:

\[k = \frac{\sum (E \cdot Is/s)}{\sum (E \cdot IR/\xi)} \]

Extremo inferior: \(k_A = \frac{Is/s}{io} = 0 < 0.4 \) (determinante)

Extremo superior: \(k_C = \frac{Is/s}{IR/\xi} = \frac{1/6}{0.70 \cdot 1/10} = 2.38 \)

La reducción de la rigidez del travesaño (debido a la formación de fisuras) respecto de la rigidez de los pies del pórtico, se considera mediante el coeficiente 0.7, reduciendo la rigidez a flexión del travesaño.

\[s_K = \beta \cdot s = 1.40 \cdot 6.0 = 8.4 \text{ m} \]

CIRSOC 201, artículo 17.4.2.

Se supone que el módulo de elasticidad \(E \) es el mismo tanto para el travesaño como para los pies del pórtico.

Cuaderno 220, pág.185, artículo 4.3.1.1., 5ª párrafo: Debido a que en la práctica nunca se puede asegurar la existencia de un empotramiento totalmente rígido, no deben utilizarse coeficientes \(k < 0.4 \).
\[i = \frac{d}{\sqrt{12}} = 65 \cdot 0,289 = 18,8 \text{ cm} \]

\[\lambda = \frac{s_R}{i} = \frac{840 \text{ cm}}{18,8 \text{ cm}} = 44,7 \approx 45 \]

Por el valor de la esbeltez \(\lambda = 45 \) se determina que es un elemento de mediana esbeltez.

La verificación de la seguridad a pandeo se realiza utilizando el método de dimensionamiento en el tercio medio de la longitud de pandeo, teniendo en cuenta la excentricidad adicional \(f \).

La excentricidad prevista de la carga en el pie del pórtico C es:

\[\frac{e}{d} = \frac{M/N}{d} = \frac{\left| M_C/V_A \right|}{d_0} = \frac{193/500}{0,65 \text{ m}} = \frac{0,59}{2,50} \]

\[\lambda - \frac{20}{160} \geq 0 \]

por lo tanto \[f = d \frac{\lambda - 20}{160} \geq 0 \]

\[f = 65 \frac{45 - 20}{160} = 10,2 \text{ cm} \]

Momento adicional \(M_f \) debido a la excentricidad adicional \(f \):

\[M_f = \pm N \cdot f = \pm 500 \text{ kN} \cdot 0,102 \text{ m} = \pm 51 \text{ kNm} \]
5. Dimensionamiento:

Valores característicos: \(\sigma_{Bk} = 21 \text{ MN/m}^2 \)

\[\beta_R = 17,5 \text{ MN/m}^2 \]

\[\beta_S = 420 \text{ MN/m}^2 \]

\[\sigma_s \text{ adm} = 240 \text{ MN/m}^2 \]

5.1. Dimensionamiento de los pies de pórtico (corte I - I)

Momento total en C:

\[M_{C\text{ total}} = M_C - M_f = -193 - 51 = -244 \text{ kNm} \]

\[\frac{e}{d} = \frac{M}{N \cdot d} = \frac{244 \text{ kNm}}{500 \text{ kN} \cdot 0,65} = 0,75 < 3,5 \]

Debido a que \(e/d < 3,5 \) se diseñan los pies de pórtico como elementos comprimidos con armadura simétrica

\[d_1/d = 5/65 = 0,077 \approx 0,10 \]

Cuaderno 220, pág. 162, párrafo siguiente a la ecuación (4.1.8.): Debido a que en el caso de los pórticos desplazables sus esquinas siempre se encuentran ubicadas en el tercio medio de la longitud de pandeo, el dimensionamiento del pie de pórtico se debe efectuar incluyendo a \(M_f \) siempre en la esquina del pórtico.

CIRSOC 201, artículo 25.1.: "Los elementos comprimidos con excentricidades relativas de la carga según el penúltimo párrafo del artículo 17.4.1., deben tratarse como vigas y losas.

No se puede considerar un momento de esquina positivo total \(M_C \) porque \(|M_f| < |M_C| \).
Dimensionamiento con la tabla 1.11.b. del Cuaderno 220, pág. 53:

\[
n = \frac{\frac{N}{b_0 \cdot d_0 \cdot \beta_R}}{-0,500 \text{ MN}} = \frac{0,4 \text{ m} \cdot 0,65 \text{ m} \cdot 17,5 \text{ MN/m}^2}{-0,110} = 0,1
\]

\[
m = \frac{|M_{c \text{ total}}|}{b_0 \cdot d_0^2 \cdot \beta_R} = \frac{0,244 \text{ MNm}}{0,4 \text{ m} \cdot (0,65)^2 \text{ m}^2 \cdot 17,5 \text{ MN/m}^2} = 0,083
\]

En la tabla leemos: \(\omega_0 = 0,1\)

\[
\mu_{01} = \mu_{02} = \omega_0 / \beta_{SR} = 0,1/24 = 0,42\% > 0,4\%
\]

Armadura mínima necesaria:

\[
A_{s1} = A_{s2} = \mu_{01} \cdot b_0 \cdot d_0 = \frac{0,42\%}{100} \cdot 40 \cdot 65 = 11 \text{ cm}^2
\]

\[
\beta_{SR} = \frac{\beta_{S}}{\beta_{R}} = \frac{420 \text{ MN/m}^2}{17,5 \text{ MN/m}^2} = 24
\]

CIRSOC 201, artículo 25.2.2.1., 1º párrafo:

\(\mu_{01} \text{ nec} = \mu_{02} \text{ nec} = 0,4\% \) de la sección total de hormigón.

CIRSOC 201, artículo 25.2.2.2., 2º y 3º párrafo:

\(s_{est \text{ exist}} = 20 \text{ cm} < s_{est \text{ máx}} = 12 \text{ cm} = 24 \text{ cm}\)

Adoptamos:

- ADM-420-N : 4 \(\phi\) 20 en cada lado (\(A_s \text{ exist} = 12,5 \text{ cm}^2\))
- Estribos \(\phi\) 8 y \(s_{est} = 20 \text{ cm}\)
Verificación total del corte $H_A \approx 48$ kN:

Esta verificación no es necesaria debido a que la excentricidad relativa de la carga $e/d = 0,75 < 3,5$, o sea que los pies del pórtico se dimensionan como elementos comprimidos.

5.2. Dimensionamiento del travesaño del pórtico

Debido a que se trata de un sistema desplazable, el travesaño se deberá dimensionar también considerando el efecto de empotramiento que ejerce sobre los pies del pórtico.

Por este motivo se efectúa el dimensionamiento para los momentos debidos a las cargas y además para el momento adicional M_f.

Corte en C (II - II):

$$
M_{II \text{ total}} = M_c + (V_A - F_2) \frac{d_0}{2} - M_f =
$$

$$
= -193 + (500 - 400) \cdot 0,65/2 - 51 = -212 \text{ kNm}
$$

$$
N = -H_A \approx -48 \text{ kN (compresión)}
$$

Excentricidad relativa de la carga:

$$
e/d = \frac{|M_{II \text{ total}}/N|}{d_0} = \frac{|212/48|}{0,65} = 6,8 > 3,5
$$
Debido a que \(\frac{e}{d} > 3.5 \) no se efectúa la verificación de la seguridad a pandeo.

Dimensionamiento del travesaño como viga, con la tabla \(k_h \):

\[
M_s = |M_{II\ total}| - N \cdot z_s = 212 + 48 (0.325 - 0.05) = 225 \text{ kNm}
\]

\[
k_h = \frac{h}{M_s/b_0} = \frac{60 \text{ cm}}{225 \text{ kNm} / 0.4 \text{ m}} = 2.5 > k_{h^*} = 1.72
\]

Del Cuaderno 220, pág. 39, Tabla 1.7.a. obtenemos para hormigón H-21 y \(k_h = 2.5 \) (interpolando):

\[
k_s = 4.65
\]

\[
k_z = 0.90
\]

\[
A_s = \frac{M_s}{h} \cdot k_s + \frac{N}{\sigma_{adm}} = \frac{225 \text{ kNm}}{60 \text{ cm}} \cdot 4.65 - \frac{48 \text{ kN}}{24} = 15.5 \text{ cm}^2
\]

Se adopta:

ADM-420-N : 5 Φ 20 \(A_s \) exist = 15.71 cm²

Dimensionamiento en la mitad del tramo (corte \(m \) - \(m \))

\[
M_m = 307 \text{ kNm}
\]

\[
N = -H_A = -48 \text{ kN} \text{ (compresión)}
\]

\[
M_s = M_m - N \cdot z_s = 307 + 48 (0.325 - 0.05) = 320 \text{ kNm}
\]

CIRSOC 201, artículo 17.4.1., 3º párrafo a).

CIRSOC 201, artículo 25.1.: "Los elementos comprimidos con excentricidades relativas de la carga, según el penúltimo párrafo del artículo 17.4.1., deben tratarse constructivamente como vigas y losas, o sea cuando \(\lambda \leq 70 \) y \(e/d \geq 3.50 \).

<table>
<thead>
<tr>
<th>(k_s)</th>
<th>(k_z)</th>
<th>(k_{h^*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.72</td>
<td>1.72</td>
<td>1.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k_s)</th>
<th>(k_z)</th>
<th>(k_{h^*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>0.90</td>
<td>1.72</td>
</tr>
</tbody>
</table>

Tabla 1.7.a

Tabla para el dimensionamiento con coeficientes dimensionales para secciones rectangulares sin armadura de compresión para flexión con esfuerzo longitudinal (to 420/500).

Sin momento adicional

\[
e/d = \frac{|M_m/N|}{d_0} = 9.8 > 3.5
\]

Debido a que \(e/d > 3.5 \) (ver el artículo 25.1. y 17.4.1., 3º párrafo) se procede a dimensionar al elemento como viga.
\[k_h = \frac{h}{\sqrt{M_g/b_0}} = \frac{60}{\sqrt{320/0,4}} = 2,12 > k_h^* = 1,72 \]

Del Cuaderno 220, página 39, Tabla 1.7.a. obtenemos para H-21 y
k_h = 2,12

\[k_s = 4,9 \]

\[k_z = 0,85 \]

\[A_s = \frac{M_g}{h} \cdot k_s + \frac{N}{\sigma_{s \text{ adm}}} = \frac{320}{60} \cdot 4,9 - \frac{48}{24} = 24,1 \text{ cm}^2 \]

Se adopta:

ADM-420-N 5 φ 25 \[A_s \text{ exist} = 42,5 \text{ cm}^2 \]

Limitación de la abertura de fisuración:

-Corte II - II:

Verificación mediante el diámetro límite de la Tabla 1.7.a., del Cuaderno 220, pág.39.

Para H-21 y \(k_h = 2,5 \), obtenemos interpolando:

\[d_s \text{ máx} = 30 \text{ mm} \]

\[d_s \text{ exist} = 20 \text{ mm} \]
Verificación en la mitad del tramo:

Para $H-21$ y $k_h = 2,12$, obtenemos interpolando:

$$d_{s\text{máx}} = 44 \text{ mm} > d_{s\text{exist}} = 25 \text{ mm}$$

Dimensionamiento a corte:

$$Q_s \text{máx} = \frac{F_1}{2} = \frac{200}{2} = 100 \text{ kN} = 0,10 \text{ MN}$$

$$\tau_{0 \text{máx}} = \frac{Q_s \text{máx}}{b_0 \cdot k_2 \cdot h} = \frac{0,10}{0,4 \cdot 0,85 \cdot 0,60} = 0,49 \text{ MN/m}^2 < \tau_{012} = \frac{0,75 \text{ MN/m}^2}{2}$$

τ_{012}, τ_{02} y τ_{03} se obtienen de CIRSOC 201, Tabla 18, pág. 202.

Este valor corresponde a zona de corte 1 y según el artículo 17.5.5. de CIRSOC 201, es necesario colocar armadura de corte. Se colocará la misma armadura que en el caso A:

- Acero ADM-420-N, estribos $\phi 8$ (de dos ramas)
 $$s_{est} = 30 \text{ cm}$$

6. **Colocación de la armadura**

6.1. **Generalidades**
6.2. Longitud básica de anclaje

\[l_0 = \frac{\beta_S}{7 \cdot \tau_{1 \text{adm}}} \cdot d_s \]

Zona de adherencia I: \(\tau_{1 \text{adm}} = 1,8 \text{ MN/m}^2 \)

Zona de adherencia II: \(\tau_{1 \text{adm}} = 0,9 \text{ MN/m} \)

\[l_0(I) = 33 \cdot d_s \]

\[l_0(II) = 67 \cdot d_s \]

6.3. Longitud de empalme de las barras externas

Para tener en cuenta el proceso o las etapas de hormigonado, el tramo vertical de la longitud de empalme de la esquina del pórtico (tramo curvado), sólo deberá llegar hasta el borde inferior del travesaño (longitud \(l_{eV} \)). Para la zona de empalme vertical se considerará zona de adherencia I, y para la zona horizontal, zona de adherencia II.

De esta manera, para los empalmes que sólo se hallan en la zona de adherencia I o II, se obtiene:

\[l_{eI} = \alpha_{eI} \cdot \alpha_1 \cdot \alpha_A \cdot \alpha_{0I} \cdot d_s \]

\[l_{eII} = \alpha_{eII} \cdot \alpha_1 \cdot \alpha_A \cdot \alpha_{0II} \cdot d_s \]

CIRSOC 201, artículo 18.6.3.2., ec(32) y artículo 18.5.2.2., ec(30).

\[\alpha_A = \frac{A_{s \text{ nec}}}{A_s \text{ exist}} \]

\[\alpha_{0I} = \frac{\beta_S}{7 \cdot \tau_{1 \text{adm}}(I)} = 33 \]

\[\alpha_{0II} = \frac{\beta_S}{7 \cdot \tau_{1 \text{adm}}(II)} = 67 \]
\[\alpha_{eII} = 0,75 \cdot \alpha_{eI} \quad \text{y} \quad \alpha_{eII} = 2 \cdot \alpha_{0I} \]

Reemplazando:

\[\ell_{eII} = 0,75 \cdot \alpha_{eI} \cdot \alpha_{1} \cdot \alpha_{A} \cdot \alpha_{0I} \cdot d_{s} = 1,5 \cdot \ell_{eI} \]

- Tramo vertical de la longitud de empalme (zona de adherencia I)

\[\ell_{e \text{vert}} = d_{s} - c_{est} - d_{s \text{est}} - d_{s} = (\approx) 2* = \]

\[\ell_{e \text{vert}} = 65 - 2,0 - 0,8 - 2,0 - 2,0 = 58,2 \text{ cm} \]

- Tramo horizontal (zona de adherencia II)

\[\ell_{e \text{horiz}} = 1,5 \left(\ell_{eI} - \ell_{ev} \right) \]

\[\ell_{eI} = \alpha_{eI} \cdot \alpha_{1} \cdot \alpha_{A} \cdot \alpha_{0I} \cdot d_{s} = 2,2 \cdot 0,7 \cdot 1,0 \cdot 33 \cdot 2,0 = 102 \text{ cm} \]

\[\alpha_{eI} = 2,2 \quad \text{(para un porcentaje de barras empalmadas = 100%)} \]

\[\alpha_{1} = 0,7 \]

CIRSOC 201, artículo 18.6.3.2., Tabla 26, renglón 3:

\[\alpha_{eII} = 0,75 \alpha_{eI} \]

CIRSOC 201, artículo 18.3.1., Tabla 24, renglón 4:

\[\alpha_{eII} = 2 \cdot \alpha_{0I} \]

Este valor está dado por las dimensiones del travesaño.

* 2cm es la separación entre el gancho de la armadura del tramo y el borde inferior del travesaño.

CIRSOC 201, Tabla 26, renglón 2.

CIRSOC 201, Tabla 25, renglón 2.
\(\alpha_A = 1 \) (en ambos cortes)

\(\alpha_s \) = 33

\(k_{e\text{ horiz}} = 1.5 \) (102 cm - 58.2 cm) = 66 cm

\[k_e = k_{ev} + k_{e\text{ horiz}} = 58.2 \text{ cm} + 66 \text{ cm} = 1.24 \text{ m} > 20 \text{ cm} \]

\[d_{br} = 21 \]

\[d_{br} = 7 \cdot d_s = 14 \text{ cm} \]

6.4. Armadura transversal en la zona de empalme

Porcentaje de barras empalmadas: 100%

Separación entre ejes de barras contiguas: < 10 \(d_s \)

El dimensionamiento se realiza para el esfuerzo de una sola barra longitudinal empalmada.

La armadura transversal debe envolver a los empalmes como si se tratara de estribos, en 2 \(k_e/3 \).

\[A_{s\text{ est}} = A_s \frac{k_1}{3} = 3.14 \text{ cm}^2 \text{ (para } \phi 20) \]

Se adopta:

- Acero ADM-420-N; 7 estribos \(\phi 8 \) (de 2 ramas) = 7,0 \(\text{cm}^2 \)
- \(s_{est} = 15 \text{ cm en la zona de los extremos de los empalmes } (k_e/3) \)
El anclaje de las ramas de los estribos abiertos, en la sección se realiza con \(\lambda_1 \):

\[
\lambda_1 = \alpha_1 \cdot \alpha_A \cdot \alpha_0 \cdot d_s
\]

\(\alpha_1 = 1,0 \) (CIRSOC 201, Tabla 25, 1º renglón)

\[
\alpha_A = \frac{3,8 \text{ cm}^2}{7,0 \text{ cm}^2} = 0,54
\]

\[
\alpha_0 = \frac{\beta_S}{7 \cdot \tau_{adm}} = \frac{420 \text{ MN/m}^2}{7 \cdot 1,8 \text{ MN/m}^2} = 33
\]

\[
\lambda_1 = 1,0 \cdot 0,54 \cdot 33 \cdot 0,8 = 14,3 \text{ cm}
\]

Adoptamos 30 cm

6.5. Anclaje de la armadura de tramo del travesaño

\(A_s \) nec abajo = \(\frac{1}{4} \) \cdot \(A_s \), tramo nec = \(\frac{1}{4} \) \cdot 24,1 cm\(^2\) = 6 cm\(^2\)

Se adopta:

- Acero ADM-420-N : 2 \# 25 \(A_s \) exist abajo = 9,8 cm\(^2\)
Longitud de anclaje necesaria considerando a la esquina del pórtico como un apoyo intermedio:

\[l_s = 6 \cdot d_s = 6 \cdot 2.5 = 15 \text{ cm} < l_{exist} = 20 \text{ cm} \]